
Half term

Unit Title 
Hyperlink to 
SOW Description Skills & content covered

10.1 and 
10.2

1.1	and	1.2	
Systems	
Architecture	
and	
Memory.	2.1	
Algorithms,	
2.4	
Computation
al	logic,	2.6	
Data	
Representati
on

Description	of	
CPU,	Memory,	
Algorithms,	
Computational	
Logic	and	Data	
Representation

2.2	
Programming	
	Techniques

Programming	
techniques	
revisited	
from	Year	9	-	
PG	Online	
Python	next	
steps

the	purpose	of	the	CPU	•	Von	Neumann	architecture:	⃝	MAR	(Memory	Address	Register)	⃝	MDR	(Memory	Data	
Register)	⃝	Program	Counter	⃝	Accumulator	•	common	CPU	components	and	their	function:	⃝	ALU	(Arithmetic	
Logic	Unit)	⃝	CU	(Control	Unit)	⃝	Cache	•	the	function	of	the	CPU	as	fetch	and	execute	instructions	stored	in	
memory	•	how	common	characteristics	of	CPUs	affect	their	performance:	⃝	clock	speed	⃝	cache	size	⃝	number	
of	cores	•	embedded	systems:	⃝	purpose	of	embedded	systems	⃝	examples	of	embedded	sytems.	Memory	-		the	
difference	between	RAM	and	ROM
•	the	purpose	of	ROM	in	a	computer	system	•	the	purpose	of	RAM	in	a	computer	system	•	the	need	for	virtual	
memory	•	flash	memory.	Algorithms	-	computational	thinking:		abstraction	-	decomposition	-	algorithmic	thinking	
how	to	produce	algorithms	using:	-	pseudocode	-	using	flow	diagrams	•	interpret,	correct	or	complete	algorithms.		
Computational	logic	-	why	data	is	represented	in	computer	systems	in	binary	form	•	simple	logic	diagrams	using	the	
operations	AND,	OR	and	NOT	•	truth	tables	•	combining	Boolean	operators	using	AND,	OR	and	NOT	to	two	levels	•	
applying	logical	operators	in	appropriate	truth	tables	to	solve	problems.	Data	representation	-	bit,	nibble,	byte,	
kilobyte,	megabyte,	gigabyte,	terabyte,	petabyte	•	how	data	needs	to	be	converted	into	a	binary	format	to	be	
processed	by	a	computer.	Numbers	•	how	to	convert	positive	denary	whole	numbers	(0–255)	into	8	bit	binary	
numbers	and	vice	versa	•	how	to	add	two	8	bit	binary	integers	and	explain	overflow	errors	which	may	occur	•	binary	
shifts
•	how	to	convert	positive	denary	whole	numbers	(0–255)	into	2	digit	hexadecimal	numbers	and	vice	versa	•	how	to	
convert	from	binary	to	hexadecimal	equivalents	and	vice	versa	•	check	digits.	Characters	•	the	use	of	binary	codes	
to	represent	characters	•	the	term	‘character-set’	•	the	relationship	between	the	number	of	bits	per	character	in	a	
character	set	and	the	number	of	characters	which	can	be	represented	(for	example	ASCII,	extended	ASCII	and	
Unicode).																																																																																																																																																															Programming	
techniques	-	the	use	of	variables,	constants,	operators,	inputs,	outputs	and	assignments	•	the	use	of	the	three	basic	
programming	constructs	used	to	control	the	flow	of	a	program:	-	sequence
⃝	selection
⃝	iteration	(count	and	condition	controlled	loops)the	use	of	data	types:
⃝	integer
⃝	real
⃝	Boolean
⃝	character	and	string
⃝	casting
•	the	common	arithmetic	operators
•	the	common	Boolean	operators.	
•	the	use	of	basic	string	manipulation	the	use	of	arrays	(or	equivalent)	when	solving	problems,	including	both	one	
and	two	dimensional
arrays
•	how	to	use	sub	programs	(functions	and	procedures)	to	produce	structured	code



1.3	storage,	
2.6	Data	
Representati
on,	1.4	
Wired	and	
Wireless	
Networks,	
1.5	Network	
topologies,	
protocols	
and	layers

Description	of	
Storage,	Data	
Representation	
continued,	
Wired	and	
wireless	
networks,	
network	
protocols.

2.2	
Programming	
	techniques,	
2.1	
Algorithms

Writing	to	files,	
continued	
practise	whilst	
writing	
algorithms.

10.5 and 6 1.7	Systems	
Software,	
1.6	Systems	
Security

Systems	
software	and	
security

Systems	software	-	the	purpose	and	functionality	of	systems	software
•	operating	systems:	-	user	interface	-	memory	management/multitasking	-	peripheral	
management	and	drivers	-	user	management	-	file	management	•	utility	system	software:	-	
encryption	software	-	defragmentation	-	data	compression	-	the	role	and	methods	of	
backup:		full	-		incremental.	Systems	Security	-	forms	of	attack
•	threats	posed	to	networks:	-	malware	-	phishing	-	people	as	the	‘weak	point’	in	secure	
systems	(social	engineering)	-	brute	force	attacks	-	denial	of	service	attacks
-	data	interception	and	theft	-	the	concept	of	SQL		-	poor	network	policy	•	identifying	and	
preventing	vulnerabilities:
⃝	penetration	testing
⃝	network	forensics
⃝	network	policies
⃝	anti-malware	software

10.3 and 
10.4

Storage	-	the	need	for	secondary	storage
•	data	capacity	and	calculation	of	data	capacity	requirements	•	common	types	of	storage:		-optical	-	magnetic	-solid	
state	•	suitable	storage	devices	and	storage	media	for	a	given	application,	and	the	advantages	and	disadvantages	of	
these,	using	characteristics:	-	capacity	-	speed	-	portability	-	durability	-	reliability	-cost	Data	representation	-	Images	
•	how	an	image	is	represented	as	a	series	of	pixels	represented	in	binary	•	metadata	included	in	the	file	•	the	effect	
of	colour	depth	and	resolution	on	the	size	of	an	image	file.	Sound	•	how	sound	can	be	sampled	and	stored	in	digital	
form	•	how	sampling	intervals	and	other	factors	affect	the	size	of	a	sound	file	and	the	quality	of	its	playback:	-	
sample	size	-	bit	rate	-	sampling	frequency.	Compression	•	need	for	compression	•	types	of	compression:	-	lossy	-	
lossless.	Wired	and	wireless	networks	-	•	types	of	networks:	-	LAN	(Local	Area	Network)-	WAN	(Wide	Area	Network)	
•	factors	that	affect	the	performance	of	networks	•	the	different	roles	of	computers	in	a	client-server	and	a	peer-to-
peer	network	•	the	hardware	needed	to	connect	stand-alone	computers	into	a	Local	Area	Network:	-	wireless	access	
points	-	routers/switches	-	NIC	Network	Interface	Controller/Card)	-	transmission	media	•	the	internet	as	a	
worldwide	collection	of	computer	networks:	-	DNS	(Domain	Name	Server	-	hosting	-	the	cloud•	the	concept	of	
virtual	networks.	Networks	and	network	protocols	-	star	and	mesh	network	topologies	•	Wifi:-	frequency	and	
channels	-	encryption•	ethernet•	the	uses	of	IP	addressing,	MAC	addressing,	and	protocols	including:	-	TCP/IP	
(Transmission	Control	Protocol/Internet	Protocol)	-	HTTP	(Hyper	Text	Transfer	Protocol)	-	HTTPS	(Hyper	Text	
Transfer	Protocol	Secure)	-	FTP	(File	Transfer	Protocol)	-	POP	(Post	Office	Protocol)	-	IMAP	(Internet	Message	Access	
Protocol)	-	SMTP	(Simple	Mail	Transfer	Protocol)	•	the	concept	of	layers	•	packet	switching.																																																																																																																																																																																																																																																			
																																																																																																																																																																																																					
Programming	techniques	-	the	use	of	basic	file	handling	operations:	-	open	-	read	-	write	-	close.	Continual	practise	
of	programming	techniques	-	with	algorithms	written	for	each	solution.



2.2	
Programming	
	Techniques,	
2.3	
Producing	
Robust	
Programs,	
2.4	
Computation
al	Logic

Using	
mathematical	
operators.	
Creating	robust	
programs	as	
part	of	
programming	
practise.

Continual	practise	of	programming	techniques.													Applying	mathematical	operations	including:	⃝	+
⃝	–
⃝	/
⃝	*
⃝	Exponentiation	(̂ )
⃝	MOD
⃝	DIV																																																																														Producing	Robust	Programs	-	defensive	design	considerations:
⃝	input	sanitisation/validation
⃝	planning	for	contingencies
⃝	anticipating	misuse
⃝	authentication
•	maintainability:
⃝	comments
⃝	indentation
•	the	purpose	of	testing
•	types	of	testing:
⃝	iterative
⃝	final/terminal
•	how	to	identify	syntax	and	logic	errors
•	selecting	and	using	suitable	test	data.



Half term

Unit Title 
Hyperlink 
to SOW Description Skills & content covered
Programming	
	Project	
preparation.										
								2.1	-	
Algorithms,	
3.2	-	
Analysis,											
		3.3	-	
Design,											
3.4	-	
Development		
		3.5	-Testing	
and	
Evaluation

Learning	about	
different	binary	
sort	techniques.	
Analysing,	
designing,	
developing	and	
testing	a	
programming	
task,	in	
preparation	for	
actual	project.

Programming	
	Project

Doing	
coursework	
project	in	
controlled	
conditions.	No	
teacher	
feedback	

11.1 and 2 Algorithms	-	standard	searching	algorithms:	-		binary	search	-		linear	search	•	standard	sorting	algorithms:	-		bubble	
sort	-	merge	sort	-	insertion	sort.	Analysis	-	how	to	analyse	and	identify	the	requirements	for	a	solution	to	the	
problem	•	how	to	set	clear	objectives	that	show	an	awareness	of	the	need	for	real	world	utility	•	how	to	use	
abstraction	and	decomposition	to	design	the	solution	to	a	problem	•	how	to	identify	the	data	requirements	for	their	
system	•	how	to	identify	test	procedures	to	be	used	during	and	after	development	to	check	their	system	against	the	
success	criteria	•	how	to	use	validation	to	ensure	a	robust	solution	to	a	problem.	Design	-	how	to	design	suitable	
algorithms	to	represent	the	solution	to	a	problem	•	how	to	design	suitable	input	and	output	formats	and	navigation	
methods	for	their	system	•	how	to	identify	suitable	variables	and	structures	with	appropriate	validation	for	their	
system	•	how	to	use	appropriate	data	types	in	their	system	•	how	to	use	functions/sub	programmes	to	produce	
structured	reusable	code	•	how	to	select	suitable	techniques	for	the	development	of	the	solution.	Development	-	
how	to	develop	a	solution	to	the	identified	problem	using	a	suitable	programming	language(s)	•	how	to	
demonstrate	testing	and	refinement	of	the	code	during	development	•	how	to	explain	the	solution	using	suitable	
annotation	and	evidence	of	development	•	how	to	use	suitable	techniques	to	solve	all	aspects	of	the	problem	•	how	
to	take	a	systematic	approach	to	problem	solving	•	how	to	deploy	practical	techniques	in	an	efficient	and	logical	
manner	•	how	to	show	an	understanding	of	the	relevant	information	by	presenting	evidence	of	the	development	of	
their	solutions	•	how	to	show	an	understanding	of	the	technical	terminology/concepts	that	arise	from	their	
investigation	through	analysis	of	the	data	collected	•	how	to	use	the	erminology/concepts	surrounding	their	topic	
and	contained	in	the	information	collected	correctly	when	it	comes	to	producing	analysis	in	the	supporting	script.		
Testing	and	Evaluation	-	how	to	produce	a	full	report	covering	all	aspects	of	the	investigation	•	how	to	present	the	
information	in	a	clear	form	which	is	understandable	by	a	third	party	and	which	is	easily	navigatable	•	how	to	
critically	appraise	the	evidence	that	they	have	presented	•	how	to	test	their	own	solution	•	how	to	present	their	
evaluation	in	a	relevant,	clear,	organised,	structured	and	coherent	format	•	how	to	use	specialist	terms	correctly	
and	appropriately	•	how	to	present	a	conclusion	to	the	report	•	how	to	justify	their	conclusions	based	on	the	
evidence	provided.																																																																													Programming	coursework	begun	and	completed	in	
controlled	conditions	in	class	-	20	hours



11.3 2.2	
Programming	
	
teachniques,	
2.5	
Translators	
and	Facilities	
of	languages,	
1.8	Ethical,	
legal,	
cultural	and	
environment

Learning	final	
programming	
techniques.	
Learning	about	
translators.	
Discussions	
around	ethics	
and	
environment.

Programming	techniques	-	the	use	of	records	to	store	data	•	the	use	of	SQL	to	search	for	data,	
Translators	and	Facilites	of	languages	-	characteristics	and	purpose	of	different	levels	of	programming	
language,	including	low	level	languages	•	the	purpose	of	translators	•	the	characteristics	of	an	
assembler,	a	compiler	and	an	interpreter	•	common	tools	and	facilities	available	in	an	integrated	
development	environment	(IDE):	-	editors	-	error	diagnostics	-	run-time	environment		-	translators.	
Ethical	concerns	-	how	to	investigate	and	discuss	Computer	Science	technologies	while	considering:		-	
ethical	issues		-		legal	issues	-	cultural	issues	-	environmental	issues.	-	privacy	issues.	•	how	key	
stakeholders	are	affected	by	technologies	•	environmental	impact	of	Computer	Science	•	cultural	
implications	of	Computer	Science	•	open	source	vs	proprietary	software	•	legislation	relevant	to	
Computer	Science:	-	The	Data	Protection	Act		-	Computer	Misuse	Act	1990	-	Copyright	Designs	and	
Patents	Act	1988	-	Creative	Commons	Licensing	-	Freedom	of	Information	Act	2000.

11.4 REVISION
11.5 REVISION


