A Level OCR PHYSICAL EDUCATION

The Vascular System

Learning Objectives:

- Distribution of Cardiac output at rest and during exercise
- Role of the Vasomotor centre, arterioles and pre-capillary sphincters
- Oxygen and Carbon Dioxide transport and the effect of smoking
- Blood pressure
- Blood pressure in exercise and hypertension
- Maintenance of Venous return mechanisms
- <u>Effects of warm up and cool downs</u> on cardiovascular system
- Coronary Heart Disease, arteriosclerosis, atherosclerosis, angina and heart

Circulatory system Arteries lungs **Veins** pulmonary circulation left heart right heart **Arterioles** systemic circulation Venules organs and tissues of the body Describe the characteristics and function of each vessel. Systemic circulation is... **Capillaries** Pulmonary circulation is...

Venous Return (VR)
Describe VR
••••••••••••••••••••••••••••••••
How is VR linked to Stroke Volume? (Hint: STARLING'S LAW)
State and describe the 5 mechanisms that maintain VR.

Name the Venous return mechanisms

Describe how a good venous return would benefit the performance of a midfielder in football/hockey/netball?	
what is blood pooling and now is it prevented:	
Redistribution of Cardiac Output	
Why do we faint?	
Cardiac output at rest =Litres/min	
Cardiac output during exercise =Litres/min	
Which is muscle blood flow and which is organ blood flow?	
90%	
0	
REST $\rightarrow VO_2 \rightarrow$ MAX	

At rest% of Cardiac output goes to
and goes to
<u>During exercise</u> the majority (%) of Cardiac output goes
to goes to the
is maintained,
in order to keep up vital functions.

The vascular shunt mechanism is controlled by the <u>Vasomotor control</u> <u>centre (VCC)</u> in the Medulla Oblongata.

The VCC receives information from *Chemoreceptors* and *Baroreceptors* about chemical and pressure changes.

The VCC uses the Sympathetic Nervous System (SNS) to either <u>vasodilate</u> or <u>vasoconstrict</u> *arterioles* and *pre-capillary sphincters*, meaning blood is *shunted* from one location to where it is required (from organs to working muscles).

During exercise:

- 1. The VCC *increases* sympathetic stimulation of <u>arterioles</u> and <u>pre-capillary sphincters</u> leading to **organs**. = VASOCONSTRICTION
- 2. The VCC *decreases* sympathetic stimulation of <u>arterioles</u> and <u>pre-capillary sphincters</u> leading to **muscles**. = VASODILATION