Stroke volume, Heart rate and Cardiac output at rest

	Definition	Typical Values	
		(UNITS?)	
Stroke volume		Rest –	
(SV)		Sub-max –	
	SV = EDV - ESV	Max –	
Heart rate		Rest –	
(HR)		Sub-max –	
		Max –	
Cardiac output		Rest –	
(Q)		Sub-max –	
	Q =	Max –	

What	ar۵	FDV	and	FC/	/2
vvnat	are	EDV	anu	$\Gamma \mathcal{I} \mathcal{I}$	/ <u>r</u>

EDV -

ESV -

How is maximum Heart rate calculated?

What is bradycardia? Who might experience bradycardia?

How is it possible for an elite athlete to have a similar resting Cardiac Output as a sedentary individual?

Responses of HR, SV and CO to exercise

(Annotate the diagrams – what is happening at each stage?)

Heart rate responses to exercise (It may be useful to draw this graph

Describe what is happening to Heart rate at points 1 to 6