DRAWING MOLECULES 1

$\mathbf{N H}_{3}$

$\mathrm{H}-\mathrm{N}-\mathrm{H}$

$0=0$

HCl

$\mathrm{H}-\mathrm{Cl}$

$\mathbf{B r}-\mathbf{B r}$

$\mathbf{O}=\mathbf{C}=\mathbf{O}$

```
\(\mathrm{SiH}_{4}\)
```


$\mathrm{H}_{2} \mathrm{O}$

H—O-H
$\mathbf{N} \equiv \mathbf{N}$

$\mathbf{H}-\mathbf{C} \equiv \mathbf{C}-\mathbf{H}$

```
\(\mathbf{C}_{6} \mathrm{H}_{6}\)
```


CH_{4}

$\mathbf{N H}_{3}$

$\mathrm{H}-\mathrm{N}-\mathrm{H}$

$\mathrm{H}_{\mathrm{x}}^{\circ} \mathrm{N}_{\mathrm{x}} \mathrm{H}$ -X
 H

$0=0$

$\mathrm{H}-\mathrm{Cl}$

$-$
 $\mathrm{H}_{\mathrm{x}} \mathrm{Cl}$: -

- XX
 : $\mathrm{Br}_{\mathrm{x}}^{\mathrm{e}} \mathrm{Br}_{\mathrm{x}}^{\mathrm{x}}$ \bullet
 XX

H—P—H

$\mathrm{H} \times \mathbf{P} \times \mathbf{H}$ -X
 H

CO_{2}

$\mathrm{O}=\mathrm{C}=\mathrm{O}$

${ }^{\circ}{ }^{\circ} \stackrel{\dot{x}}{\dot{x}}$

$\mathbf{S i H}_{4}$

H -X
 $\mathbf{H}_{\mathrm{x}} \mathrm{Si}^{\circ}{ }_{\mathrm{x}} \mathbf{H}$
 ox
 H

$\mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}-\mathrm{O}-\mathrm{H}$

H $\times \mathbf{O} \times \mathbf{H}$ -•

$\mathbf{N} \equiv \mathbf{N}$

${ }_{\mathrm{x}}^{\mathrm{x}} \mathbf{N}{ }_{\mathrm{x}}^{\stackrel{\circ}{\dot{x}}} \mathbf{N}$:
 X

```
\(\mathrm{C}_{2} \mathrm{H}_{4}\)
```

$\mathbf{H}-\mathbf{C}=\stackrel{H}{\mathbf{C}}=\mathbf{C}$

$$
\begin{aligned}
& \text { H H }
\end{aligned}
$$

$\mathbf{H}-\mathbf{C} \equiv \mathbf{C}-\mathbf{H}$

${ }^{\circ}$

$\mathrm{C}_{6} \mathrm{H}_{6}$

CALCULATIONS MIXTURE 1

1) Sodium reacts with oxygen as shown: $4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}$

Find the M_{r} of the following substances involved in this reaction.
a) sodium
Na
23
b) oxygen
O_{2}
$2(16)=32$
c) sodium oxide
$\mathrm{Na}_{2} \mathrm{O}$
$2(23)+16=62$
2) a) How many moles in the following:
i) 21.3 g of chlorine, Cl_{2}

$$
\begin{aligned}
& \frac{\text { mass }}{M_{r}}=\frac{21.3}{71}=0.3 \mathrm{~mol} \\
& \frac{\text { mass }}{M_{r}}=\frac{5340}{267}=20 \mathrm{~mol}
\end{aligned}
$$

b) What is the mass of 0.25 moles of sulfur dioxide, SO_{2} ? $\quad \mathrm{M}_{\mathrm{r}} \times$ moles $=64 \times 0.25=16 \mathrm{~g}$
3) What mass of bromine reacts with 2.3 g of sodium to form sodium $2 \mathrm{Na}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NaBr}$ bromide?

$$
\begin{aligned}
& \text { moles } \mathrm{Na}=\frac{\text { mass }}{M_{r}}=\frac{2.3}{23}=0.1 \mathrm{~mol} \\
& \text { moles } \mathrm{Br}_{2}=\frac{0.1}{2}=0.05 \mathrm{~mol} \\
& \text { mass } \mathrm{Br}_{2}=\mathrm{M}_{\mathrm{r}} \times \text { moles }=160 \times 0.05=8.0 \mathrm{~g}
\end{aligned}
$$

4) What mass of oxygen reacts with 280 g of iron to form iron oxide?
$2 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$

$$
\begin{aligned}
& \text { moles } \mathrm{Fe}=\frac{\text { mass }}{M_{r}}=\frac{280}{56}=5 \mathrm{~mol} \\
& \text { moles } \mathrm{O}_{2}=5 \times \frac{3}{2}=7.5 \mathrm{~mol} \\
& \text { mass } \mathrm{O}_{2}=\mathrm{M}_{\mathrm{r}} \times \text { moles }=32 \times 7.5=240 \mathrm{~g}
\end{aligned}
$$

5) What is the percentage atom economy to make tungsten (W) from $\mathrm{WO}_{3}+3 \mathrm{H}_{2} \rightarrow \mathrm{~W}+3 \mathrm{H}_{2} \mathrm{O}$ tungsten oxide in this reaction?

$$
\begin{aligned}
& \begin{array}{lccc}
& \mathrm{WO}_{3}+3 \mathrm{H}_{2} \rightarrow & \mathbf{W}+3 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{M}_{\mathrm{r}} & 232 & 2 & 184 \\
\text { Mass } & 232 \mathrm{~g} & 3(2) \mathrm{g} & 184 \mathrm{~g}
\end{array} \\
& \% \text { atom economy }=\frac{\text { mass of desired product }}{\text { total mass of all reactants }} \times 100=\frac{184}{232+3(2)} \times 100=77.3 \%
\end{aligned}
$$

6) a) What is the maximum mass of calcium hydroxide that can be formed by reaction of 2.8 g of calcium oxide with water?

$$
\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}
$$

```
moles CaO = mass
moles Ca(OH)2 = 0.05 mol
mass Ca(OH)}\mp@subsup{)}{2}{}=\mp@subsup{M}{r}{}\times\mathrm{ moles = 74 x 0.05 = 3.7 g
```

b) In a reaction, 2.6 g of calcium hydroxide was formed from 2.8 g of calcium oxide. Calculate the percentage yield.

$$
\% \text { yield }=\frac{\text { mass formed }}{\text { maximum mass possible }} \times 100=\frac{2.6}{3.7} \times 100=70.3 \%
$$

7) 1.95 g of potassium is reacted with 5.08 g of iodine. Work out which is the $2 \mathrm{~K}+\mathrm{I}_{2} \rightarrow 2 \mathrm{KI}$ limiting reagent and then calculate the mass of potassium iodide formed.

$$
\begin{aligned}
& \text { moles } \mathrm{K}=\frac{\text { mass }}{M_{r}}=\frac{1.95}{39}=0.05 \mathrm{~mol} \\
& \text { moles } \mathrm{I}_{2}=\frac{\text { mass }}{M_{r}}=\frac{5.08}{254}=0.02 \mathrm{~mol} \\
& 2 \mathrm{~K}+\mathrm{I}_{2} \rightarrow 2 \mathrm{KI}
\end{aligned}
$$

0.05 moles of K needs 0.025 moles of I_{2} for all the K to react, but we don't have this much I_{2} therefore I_{2} is the limiting reagent (so the K is in excess and does not all react)
therefore only 0.04 moles of K reacts with the 0.02 moles of I_{2}, and forms 0.04 moles of KI

```
mass KI = M M moles = 166 x 0.04 = 6.64 g
```

8) 1.20 g of hydrated tin chloride decompose to form 1.01 g of $\mathrm{SnCl}_{2} \cdot \mathrm{xH}_{2} \mathrm{O} \rightarrow \mathrm{SnCl}_{2}+\mathrm{xH}_{2} \mathrm{O}$ anhydrous tin chloride on heating. Calculate the value of x.

> moles $\mathrm{SnCl}_{2}=\frac{1.01}{190}=0.005316 \mathrm{~mol}$
> mass $\mathrm{H}_{2} \mathrm{O}=1.20-1.01=0.19 \mathrm{~g}$
> moles $\mathrm{H}_{2} \mathrm{O}=\frac{0.19}{18}=0.01056 \mathrm{~mol}$

Ratio of moles $\mathrm{SnCl}_{2}: \mathrm{H}_{2} \mathrm{O}=0.005316: 0.01056=\frac{0.005316}{0.005316} \frac{0.01056}{0.005316}=1: 2$
$\therefore \mathrm{x}=\mathbf{2}$ (nearest whole number)

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can convert units					
Shows suitable working			Which numbers are part of formula					
Coes not round too much			Can work out M_{r}					
Can use sig figs out \% atom economy								
Gives units			Work out moles from mass					

1) a)

b)

c)

d)

2) a) hexene $=\mathrm{C}_{6} \mathrm{H}_{12}$, hexane $=\mathrm{C}_{6} \mathrm{H}_{14}$
b) test = bromine water, hexene = goes colourless, hexane = stays yellow-orange
c) hexane is saturated as it contains only single bonds / no double bonds
3) a) $\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}$
b) vaporise alkanes, pass over hot catalyst; or mix with steam, heat to high temperature
c) creates valuable products, alkenes used to make polymers, shorter alkanes to use as fuels
4) a)

name	methane	propane	butane
molecular formula	CH_{4}	$\mathrm{C}_{3} \mathrm{H}_{8}$	$\mathrm{C}_{4} \mathrm{H}_{10}$
structure			

b) i) butane
ii) methane
iii) methane
iv) methane
5) vaporise oil
pass into tower/column that is hot at bottom and cool at top
molecules cool and condense at different heights
as molecules have different boiling points
smaller molecules are collected higher up tower/column

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Understands bromine water test					
Good SPG			Understands saturated			Can why cracking is done		
Write equations for alkene addition			Can write equations for cracking			Compare properties of alkanes		
Can write molecular formulas			Knows how cracking is done			Fractional distillation of crude oil		

