

DRAWING MOLECULES 1

When non-metals combine with other non-metals, the atoms share electrons to form a molecule. The atoms are held together by these shared electrons which are known as covalent bonds.

Molecule = a particle made up of atoms joined by covalent bonds

Covalent bond = 2 shared electrons

How many covalent bonds?

Atoms	Number of electrons in outer shell	Number of extra electrons needed to fill the outer shell	Number of covalent bonds formed		
Group 7 (e.g. F, Cl, Br, I)	7	1	1		
Group 6 (e.g. O, S)	6	2	2		
Group 5 (e.g. N, P)	5	3	3		
Group 4 (e.g. C, Si)	4	4	4		
Н	1	1	1		

Drawing stick diagrams & dot-cross diagrams

Stick diagrams - these show each covalent bond as a stick.

Dot-cross diagrams - these show the outer shell electrons only

- 1 Draw a stick diagram
- 2 Re-draw the stick diagram without the sticks
- 3 Replace the stick with a **X●** which represents the two electrons in the bond (**X** represents electrons from one atom, and **●** represents the electron from the other atom).
- 4 Add in any other outer shell electrons from each atom (electrons are always in pairs)
- 5 CHECK that there are 8 electrons around each atom (except H where there should be 2 electrons)

Stick diagram	Molecule	Dot-cross diagram
	CH₄	
	NH ₃	
	O ₂	

© www.CHEMSHEETS.co.uk 22-May-2018 Chemsheets GCSE 1063

HCI Br ₂
Br ₂
PH ₃
CO ₂
SiH₄
H ₂ O
N_2
C_2H_4
C_2H_2
C_6H_6

Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can draw stick diagrams		
Can deduce the number of covalent bonds an atom forms			Can write dot-cross diagrams		

CALCULATIONS MIXTURE 1

1)	Sodium reacts with oxygen as shown: $4Na + O_2 \rightarrow 2Na_2O$							
	Find the M_{r} of the following substances involved in this reaction.							
	a) sodium							
	b) oxygen							
	c) sodium oxide							
2)	a) How many moles in the following:							
	i) 21.3 g of chlorine, Cl ₂							
	ii) 5.34 kg of aluminium bromide, AlBr ₃							
	b) What is the mass of 0.25 moles of sulfur dioxide, SO ₂ ?							
3)	What mass of bromine reacts with 2.3 g of sodium to form sodium $2Na + Br_2 \rightarrow 2NaBr$ bromide?							
4)	What mass of oxygen reacts with 280 g of iron to form iron oxide? $2Fe + 3O_2 \rightarrow 2Fe_2O_3$							
5)	What is the percentage atom economy to make tungsten (W) from $WO_3 + 3H_2 \rightarrow W + 3H_2O$ tungsten oxide in this reaction?							

6)				s of calcium nydroxide to falcium oxide with war		De	$CaO + H_2O \rightarrow Ca(C$	νΗ) ₂	
	b) In a reaction, percentage yie		of ca	lcium hydroxide was 1	⁻ ormed	from 2	.8 g of calcium oxide.	Calcul	late the
7)	1.95 g of potassi limiting reagent a	um is r nd then	reacted i calcula	with 5.08 g of iodine. ate the mass of potassiu	Work (biboi mu	out which le forme	ch is the $2K + I_2 \rightarrow ed$.	» 2KI	
8)				le decompose to forming. Calculate the value		of	$SnCl_2.xH_2O \rightarrow SnCl_2$	_? + xH₂	₂ O
		Chanath	I_ deviolon		Chanath	- devolon		Charath	I_ devolop
Area Done wi	rith care and thoroughness	Strength	To develop	Area Can convert units	Strength	To develop	Use equation to find reacting moles	Strength	To develop
	suitable working	 	 	Which numbers are part of formula	+	 	Can work out % atom economy		
	ot round too much		 	Can work out M_r	+		Can work out % yield		
	e sig figs			Work out moles from mass	+		Understands limiting reagents		
	, oig ligo	 		Trent out moles from made	+	-		-	

ORGANIC 3

(2)

 Complete the equations shown below for some addition reactions of alkenes. You should show the displayed structure of the products.

a)
$$H \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow H \longrightarrow H$$
 (2)

b)
$$H \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow H \longrightarrow H_2O \longrightarrow H$$
 (2)

c)
$$H \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow H \longrightarrow Cl_2 \longrightarrow C$$

d)
$$H \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow C$$
 + $Br_2 \longrightarrow C$ (2)

- 2) Hexene and hexane are both colourless liquids containing six carbon atoms.

 - b) Describe a test that could be used to distinguish these two compounds and give the result for each compound.

test

hexene hexane (3)

- c) Which of these two molecules is saturated? Explain your answer.
- 3) a) The alkenes propene (C_3H_6) and ethene (C_2H_4) can be formed with one other product when decane $(C_{10}H_{22})$ is cracked. Write an equation for a cracking reaction of decane that forms propene, ethene and one other product.

.....(2)

b) Describe one way in which cracking is done.

......(2

	c)	Explain why	crackin	g is do	ne							
											(0	
4)	a)	Complete the	e table	below a	about some alka						(5	
		name		meth	ane		propa	ine	butane		\neg	
		molecular formula							C ₄ H ₁₀			
		structure										
	b)	Which of the	se thre	e alkan	es.							
		i) has the highest boiling point?										
		ii) is the most flammable?										
		iii) is the most volatile?										
		iv) burns with the cleanest flame?										
		iv) barrio wia	1110 01	ouriout								
5)		Crude oil is a mixture of hydrocarbons which are mainly alkanes. These alkanes are separated at oil refinery by fractional distillation. Describe how this is done and explain how it works.										
											(5	
Area			Strength	To develop	Area		Strength	To develop	Area	Strength	To develop	
Done w	ith car	e and thoroughness			Understands bromine wat	ter test			Knows why cracking is done			
Good S					Understands saturated				Can draw alkanes			
		ns for alkene addition			Can write equations for cr	_			Compare properties of alkanes			
Can wr	ite mol	ecular formulas			Knows how cracking is do	one			Fractional distillation of crude oil			

© www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1247