Maths A-Level Summer Assignment

Name

This booklet has been produced to help you prepare for A-Level Maths. It is essential that you begin the course having maintained and developed your algebra from GCSE.

You also need to understand the volume of work that will be required for A-level Maths.
Completion of this booklet will provide evidence that you have the skills, commitment and work ethic required.

INSTRUCTIONS:

You are required to complete all of this work over the Summer:

- Answer the questions to the exercises in the exercise book provided, with each topic and question number clearly labelled. You must show all working (final answers alone are not accepted).
- If you are stuck, use the Key Points and Examples to remind yourself of how to do a question.
- Answers to all of the questions are given at the end of the booklet. You should use these answers to mark your work in a different coloured pen. If you have a different answer you are expected to make corrections, again showing all of your methods. Correcting your work is a vital skill in A-level mathematics as it contributes to improving your understanding in key areas.

IMPORTANT:

Questions from this booklet will be used in the initial assessment that you will sit in your first week in September so it is vital you complete it.

OPTIONAL:

If you have time and want an additional challenge, at the end of the booklet there are a selection of problem-solving tasks from NRICH, STEP and UKMT for you to try.

Expanding brackets
 and simplifying expressions

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- When you expand one set of brackets you must multiply everything inside the bracket by what is outside.
- When you expand two linear expressions, each with two terms of the form $a x+b$, where $a \neq 0$ and $b \neq 0$, you create four terms. Two of these can usually be simplified by collecting like terms.

Examples

Example 1 Expand 4(3x-2)

$$
\begin{array}{l|l}
4(3 x-2)=12 x-8 & \begin{array}{l}
\text { Multiply everything inside the bracket } \\
\text { by the 4 outside the bracket }
\end{array}
\end{array}
$$

Example 2 Expand and simplify $3(x+5)-4(2 x+3)$

$$
\begin{aligned}
& 3(x+5)-4(2 x+3) \\
& \quad=3 x+15-8 x-12 \\
& \quad=3-5 x
\end{aligned}
$$

1 Expand each set of brackets separately by multiplying $(x+5)$ by 3 and $(2 x+3)$ by -4

2 Simplify by collecting like terms: $3 x-8 x=-5 x$ and $15-12=3$

Example 3 Expand and simplify $(x+3)(x+2)$

$$
\begin{aligned}
(x+ & 3)(x+2) \\
& =x(x+2)+3(x+2) \\
& =x^{2}+2 x+3 x+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

1 Expand the brackets by multiplying $(x+2)$ by x and $(x+2)$ by 3

2 Simplify by collecting like terms: $2 x+3 x=5 x$

Example 4 Expand and simplify $(x-5)(2 x+3)$

$$
\begin{aligned}
(x-5) & (2 x+3) \\
& =x(2 x+3)-5(2 x+3) \\
& =2 x^{2}+3 x-10 x-15 \\
& =2 x^{2}-7 x-15
\end{aligned}
$$

1 Expand the brackets by multiplying $(2 x+3)$ by x and $(2 x+3)$ by -5

2 Simplify by collecting like terms: $3 x-10 x=-7 x$

Practice

1 Expand.
a $3(2 x-1)$
b $\quad-2\left(5 p q+4 q^{2}\right)$
c $\quad-\left(3 x y-2 y^{2}\right)$

2 Expand and simplify.
a $7(3 x+5)+6(2 x-8)$
b $8(5 p-2)-3(4 p+9)$
c $\quad 9(3 s+1)-5(6 s-10)$
d $2(4 x-3)-(3 x+5)$

3 Expand.
a $3 x(4 x+8)$
b $\quad 4 k\left(5 k^{2}-12\right)$
c $\quad-2 h\left(6 h^{2}+11 h-5\right)$
d $-3 s\left(4 s^{2}-7 s+2\right)$

4 Expand and simplify.
a $3\left(y^{2}-8\right)-4\left(y^{2}-5\right)$
b $2 x(x+5)+3 x(x-7)$
c $\quad 4 p(2 p-1)-3 p(5 p-2)$
d $3 b(4 b-3)-b(6 b-9)$

5 Expand $\frac{1}{2}(2 y-8)$

6 Expand and simplify.
a $\quad 13-2(m+7)$
b $\quad 5 p\left(p^{2}+6 p\right)-9 p(2 p-3)$

7 The diagram shows a rectangle.
Write down an expression, in terms of x, for the area of the rectangle.
Show that the area of the rectangle can be written as $21 x^{2}-35 x$
$3 x-5 \square$

8 Expand and simplify.
a $\quad(x+4)(x+5)$
b $\quad(x+7)(x+3)$
c $\quad(x+7)(x-2)$
d $\quad(x+5)(x-5)$
e $\quad(2 x+3)(x-1)$
f $(3 x-2)(2 x+1)$
g $\quad(5 x-3)(2 x-5)$
h $\quad(3 x-2)(7+4 x)$
i $\quad(3 x+4 y)(5 y+6 x)$
j $\quad(x+5)^{2}$
k $(2 x-7)^{2}$
l $(4 x-3 y)^{2}$

Extend

9 Expand and simplify $(x+3)^{2}+(x-4)^{2}$

10 Expand and simplify.
a $\left(x+\frac{1}{x}\right)\left(x-\frac{2}{x}\right)$
b $\left(x+\frac{1}{x}\right)^{2}$

Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$\sqrt{50}=\sqrt{25 \times 2}$	Choose two numbers that are factors of 50 One of the factors must be a square number
$=\sqrt{25} \times \sqrt{2}$	$\mathbf{2} \quad$Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$ $=5 \times \sqrt{2}$ $=5 \sqrt{2}$
$\mathbf{3} \quad$ Use $\sqrt{25}=5$	

Example 2 Simplify $\sqrt{147}-2 \sqrt{12}$

$$
\begin{aligned}
& \sqrt{147}-2 \sqrt{12} \\
& =\sqrt{49 \times 3}-2 \sqrt{4 \times 3} \\
& =\sqrt{49} \times \sqrt{3}-2 \sqrt{4} \times \sqrt{3} \\
& =7 \times \sqrt{3}-2 \times 2 \times \sqrt{3} \\
& =7 \sqrt{3}-4 \sqrt{3} \\
& =3 \sqrt{3}
\end{aligned}
$$

1 Simplify $\sqrt{147}$ and $2 \sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number

2 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
3 Use $\sqrt{49}=7$ and $\sqrt{4}=2$

4 Collect like terms

Example 3 Simplify $(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})$

| $(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})$ |
| :--- | :--- |
| $=\sqrt{49}-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}-\sqrt{4}$ |\quad| 1Expand the brackets. A common
 mistake here is to write $(\sqrt{7})^{2}=49$ |
| :--- |
| $=7-2$ |
| $=5$ |\quad| 2Collect like terms:
 $-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}$
 $=-\sqrt{7} \sqrt{2}+\sqrt{7} \sqrt{2}=0$ | |
| ---: | :--- |
| | |

Example 4 Rationalise $\frac{1}{\sqrt{3}}$

$\frac{1}{\sqrt{3}}$	$=\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	$\mathbf{1}$Multiply the numerator and denominator by $\sqrt{3}$ $=$$\frac{1 \times \sqrt{3}}{\sqrt{9}}$ $\mathbf{2}$ Use $\sqrt{9}=3$ $=\frac{\sqrt{3}}{3}$

Example 5 Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$

$$
\begin{aligned}
\frac{\sqrt{2}}{\sqrt{12}} & =\frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}} \\
& =\frac{\sqrt{2} \times \sqrt{4 \times 3}}{12} \\
& =\frac{2 \sqrt{2} \sqrt{3}}{12} \\
& =\frac{\sqrt{2} \sqrt{3}}{6}
\end{aligned}
$$

1 Multiply the numerator and denominator by $\sqrt{12}$

2 Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12 . One of the factors must be a square number

3 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
4 Use $\sqrt{4}=2$
5 Simplify the fraction:
$\frac{2}{12}$ simplifies to $\frac{1}{6}$

Example 6 Rationalise and simplify $\frac{3}{2+\sqrt{5}}$

$\frac{3}{2+\sqrt{5}}=\frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1 Multiply the numerator and denominator by $2-\sqrt{5}$ $=\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$ $=\frac{6-3 \sqrt{5}}{4+2 \sqrt{5}-2 \sqrt{5}-5}$ $=\frac{6-3 \sqrt{5}}{-1}$ $=3 \sqrt{5}-6$
Expand the brackets Simplify the fraction Divide the numerator by -1 terms wher to change the sign of all	

Practice

1 Simplify.
a $\sqrt{45}$
b $\sqrt{125}$
c $\sqrt{48}$
d $\sqrt{175}$
e $\sqrt{300}$
f $\sqrt{28}$
g $\sqrt{72}$
h $\sqrt{162}$

Hint

One of the two numbers you choose at the start must be a square number.

Watch out!

Check you have chosen the highest square number at the start.

3 Expand and simplify.
a $\quad(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$
b $\quad(3+\sqrt{3})(5-\sqrt{12})$
c $\quad(4-\sqrt{5})(\sqrt{45}+2)$
d $(5+\sqrt{2})(6-\sqrt{8})$

4 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{5}}$
b $\frac{1}{\sqrt{11}}$
c $\frac{2}{\sqrt{7}}$
d $\frac{2}{\sqrt{8}}$
e $\frac{2}{\sqrt{2}}$
f $\frac{5}{\sqrt{5}}$
g $\frac{\sqrt{8}}{\sqrt{24}}$
h $\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.
a $\frac{1}{3-\sqrt{5}}$
b $\frac{2}{4+\sqrt{3}}$
c $\frac{6}{5-\sqrt{2}}$

Extend

6 Expand and simplify $(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})$

7 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{9}-\sqrt{8}}$
b $\frac{1}{\sqrt{x}-\sqrt{y}}$

Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- $a^{m} \times a^{n}=a^{m+n}$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $a^{0}=1$
- $a^{\frac{1}{n}}=\sqrt[n]{a}$ i.e. the nth root of a
- $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
- $a^{-m}=\frac{1}{a^{m}}$
- The square root of a number produces two solutions, e.g. $\sqrt{16}= \pm 4$.

Examples

Example 1 Evaluate 10^{0}

$10^{0}=1$	Any value raised to the power of zero is equal to 1

Example 2 Evaluate $9^{\frac{1}{2}}$

$9^{\frac{1}{2}}$ $=$ $=3$	Use the rule $a^{\frac{1}{n}}=\sqrt[n]{a}$

Example 3 Evaluate $27^{\frac{1}{3}}$

$27^{\frac{2}{3}}$	$=(\sqrt[3]{27})^{2}$			
	$=3^{2}$			
	$=9$	\quad	1	Use the rule $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$
:---	:---			
2	Use $\sqrt[3]{27}=3$			

Example 4 Evaluate 4^{-2}

$$
\begin{array}{rl|l}
4^{-2} & =\frac{1}{4^{2}} & \mathbf{1} \text { Use the rule } a^{-m}=\frac{1}{a^{m}} \\
& =\frac{1}{16} & \mathbf{2} \text { Use } 4^{2}=16
\end{array}
$$

Example $5 \quad$ Simplify $\frac{6 x^{5}}{2 x^{2}}$

$$
\begin{array}{l|l}
\frac{6 x^{5}}{2 x^{2}}=3 x^{3} & 6 \div 2=3 \text { and use the rule } \frac{a^{m}}{a^{n}}=a^{m-n} \text { to } \\
\text { give } \frac{x^{5}}{x^{2}}=x^{5-2}=x^{3}
\end{array}
$$

Example $6 \quad$ Simplify $\frac{x^{3} \times x^{5}}{x^{4}}$

$\frac{x^{3} \times x^{5}}{x^{4}}=\frac{x^{3+5}}{x^{4}}=\frac{x^{8}}{x^{4}}$			
	$=x^{8-4}=x^{4}$	\quad	$\mathbf{1} \quad$ Use the rule $a^{m} \times a^{n}=a^{m+n}$
:---	:---		

Example 7 Write $\frac{1}{3 x}$ as a single power of x

$\frac{1}{3 x}=\frac{1}{3} x^{-1}$	Use the rule $\frac{1}{a^{m}}=a^{-m}$, note that the fraction $\frac{1}{3}$ remains unchanged

Example $8 \quad$ Write $\frac{4}{\sqrt{x}}$ as a single power of x

$\frac{4}{\sqrt{x}}$	$=\frac{4}{x^{\frac{1}{2}}}$	
	$=4 x^{-\frac{1}{2}}$	$\mathbf{1}$ Use the rule $a^{\frac{1}{n}}=\sqrt[n]{a}$

Practice

1 Evaluate.
a 14^{0}
b $\quad 3^{0}$
c $\quad 5^{0}$
d x^{0}

2 Evaluate.
a $49^{\frac{1}{2}}$
b $\quad 64^{\frac{1}{3}}$
c $\quad 125^{\frac{1}{3}}$
d $16^{\frac{1}{4}}$

3 Evaluate.
a $25^{\frac{3}{2}}$
b $\quad 8^{\frac{5}{3}}$
c $\quad 49^{\frac{3}{2}}$
d $16^{\frac{3}{4}}$

4 Evaluate.
a 5^{-2}
b $\quad 4^{-3}$
c $\quad 2^{-5}$
d 6^{-2}

5 Simplify.
a $\frac{3 x^{2} \times x^{3}}{2 x^{2}}$
b $\frac{10 x^{5}}{2 x^{2} \times x}$
c $\frac{3 x \times 2 x^{3}}{2 x^{3}}$
d $\frac{7 x^{3} y^{2}}{14 x^{5} y}$
e $\frac{y^{2}}{y^{\frac{1}{2}} \times y}$
f $\frac{c^{\frac{1}{2}}}{c^{2} \times c^{\frac{3}{2}}}$
g $\frac{\left(2 x^{2}\right)^{3}}{4 x^{0}}$
h $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$

Watch out!

Remember that any value raised to the power of zero is 1 . This is the rule $a^{0}=1$.

6 Evaluate.
a $4^{-\frac{1}{2}}$
b $\quad 27^{-\frac{2}{3}}$
c $\quad 9^{-\frac{1}{2}} \times 2^{3}$
d $16^{\frac{1}{4}} \times 2^{-3}$
e $\left(\frac{9}{16}\right)^{-\frac{1}{2}}$
f $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$

7 Write the following as a single power of x.
a $\frac{1}{x}$
b $\frac{1}{x^{7}}$
c $\sqrt[4]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt[3]{x}}$
f $\frac{1}{\sqrt[3]{x^{2}}}$

Cols
Stoke Newington School \& Sixth Form

8 Write the following without negative or fractional powers.
a x^{-3}
b $\quad x^{0}$
c $x^{\frac{1}{5}}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{2}}$
f $x^{-\frac{3}{4}}$

9 Write the following in the form $a x^{n}$.
a $5 \sqrt{x}$
b $\frac{2}{x^{3}}$
c $\quad \frac{1}{3 x^{4}}$
d $\frac{2}{\sqrt{x}}$
e $\frac{4}{\sqrt[3]{x}}$
f 3

Extend

10 Write as sums of powers of x.
a $\frac{x^{5}+1}{x^{2}}$
b $\quad x^{2}\left(x+\frac{1}{x}\right)$
c $\quad x^{-4}\left(x^{2}+\frac{1}{x^{3}}\right)$

Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $a x^{2}+b x+c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is $a c$.
- An expression in the form $x^{2}-y^{2}$ is called the difference of two squares. It factorises to $(x-y)(x+y)$.

Examples

Example 1 Factorise $15 x^{2} y^{3}+9 x^{4} y$

$15 x^{2} y^{3}+9 x^{4} y=3 x^{2} y\left(5 y^{2}+3 x^{2}\right)$	The highest common factor is $3 x^{2} y$. So take $3 x^{2} y$ outside the brackets and then divide each term by $3 x^{2} y$ to find the terms in the brackets

Example 2 Factorise $4 x^{2}-25 y^{2}$

$4 x^{2}-25 y^{2}=(2 x+5 y)(2 x-5 y)$	This is the difference of two squares as the two terms can be written as $(2 x)^{2}$ and $(5 y)^{2}$

Example 3 Factorise $x^{2}+3 x-10$

$$
\begin{aligned}
& b=3, a c=-10 \\
& \text { So } \begin{aligned}
x^{2}+3 x-10 & =x^{2}+5 x-2 x-10 \\
& =x(x+5)-2(x+5) \\
& =(x+5)(x-2)
\end{aligned}
\end{aligned}
$$

1 Work out the two factors of
$a c=-10$ which add to give $b=3$
$(5$ and -2$)$
2 Rewrite the b term ($3 x$) using these two factors
3 Factorise the first two terms and the last two terms
$4(x+5)$ is a factor of both terms

Example 4 Factorise $6 x^{2}-11 x-10$

$$
\begin{aligned}
& b=-11, a c=-60 \\
& \text { So } \\
& \begin{aligned}
6 x^{2}-11 x-10 & =6 x^{2}-15 x+4 x-10 \\
& =3 x(2 x-5)+2(2 x-5) \\
& =(2 x-5)(3 x+2)
\end{aligned}
\end{aligned}
$$

1 Work out the two factors of $a c=-60$ which add to give $b=-11$ (-15 and 4)
2 Rewrite the b term ($-11 x$) using these two factors
3 Factorise the first two terms and the last two terms
$4(2 x-5)$ is a factor of both terms

Example 5 Simplify $\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}$

Practice

1 Factorise.
a $\quad 6 x^{4} y^{3}-10 x^{3} y^{4}$
b $\quad 21 a^{3} b^{5}+35 a^{5} b^{2}$
c $25 x^{2} y^{2}-10 x^{3} y^{2}+15 x^{2} y^{3}$

2 Factorise
a $\quad x^{2}+7 x+12$
c $x^{2}-11 x+30$
e $\quad x^{2}-7 x-18$
g $\quad x^{2}-3 x-40$
b $\quad x^{2}+5 x-14$
d $x^{2}-5 x-24$
f $x^{2}+x-20$
h $\quad x^{2}+3 x-28$

3 Factorise
a $36 x^{2}-49 y^{2}$
b $4 x^{2}-81 y^{2}$

4 Factorise
a $\quad 2 x^{2}+x-3$
b $6 x^{2}+17 x+5$
c $\quad 2 x^{2}+7 x+3$
d $9 x^{2}-15 x+4$
e $\quad 10 x^{2}+21 x+9$
f $12 x^{2}-38 x+20$

5 Simplify the algebraic fractions.
a $\frac{2 x^{2}+4 x}{x^{2}-x}$
b $\frac{x^{2}+3 x}{x^{2}+2 x-3}$
c $\frac{x^{2}-2 x-8}{x^{2}-4 x}$
d $\frac{x^{2}-5 x}{x^{2}-25}$
e $\frac{x^{2}-x-12}{x^{2}-4 x}$
f $\frac{2 x^{2}+14 x}{2 x^{2}+4 x-70}$

6 Simplify
a $\frac{9 x^{2}-16}{3 x^{2}+17 x-28}$
b $\frac{2 x^{2}-7 x-15}{3 x^{2}-17 x+10}$
c $\frac{4-25 x^{2}}{10 x^{2}-11 x-6}$
d $\frac{6 x^{2}-x-1}{2 x^{2}+7 x-4}$

Extend

7 Simplify $\sqrt{x^{2}+10 x+25}$

8 Simplify $\frac{(x+2)^{2}+3(x+2)^{2}}{x^{2}-4}$

Completing the square

A LEVEL LINKS

Scheme of work: 1 b . Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $a x^{2}+b x+c$ into the form $p(x+q)^{2}+r$
- If $a \neq 1$, then factorise using a as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^{2}+6 x-2$

$$
\begin{aligned}
& x^{2}+6 x-2 \\
& =(x+3)^{2}-9-2 \\
& =(x+3)^{2}-11
\end{aligned}
$$

1 Write $x^{2}+b x+c$ in the form

$$
\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c
$$

2 Simplify

Example 2 Write $2 x^{2}-5 x+1$ in the form $p(x+q)^{2}+r$

$$
\begin{aligned}
& 2 x^{2}-5 x+1 \\
& =2\left(x^{2}-\frac{5}{2} x\right)+1 \\
& =2\left[\left(x-\frac{5}{4}\right)^{2}-\left(\frac{5}{4}\right)^{2}\right]+1 \\
& =2\left(x-\frac{5}{4}\right)^{2}-\frac{25}{8}+1 \\
& =2\left(x-\frac{5}{4}\right)^{2}-\frac{17}{8}
\end{aligned}
$$

1 Before completing the square write $a x^{2}+b x+c$ in the form $a\left(x^{2}+\frac{b}{a} x\right)+c$

2 Now complete the square by writing $x^{2}-\frac{5}{2} x$ in the form $\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}$

3 Expand the square brackets - don't forget to multiply $\left(\frac{5}{4}\right)^{2}$ by the factor of 2

4 Simplify

Practice

1 Write the following quadratic expressions in the form $(x+p)^{2}+q$
a $\quad x^{2}+4 x+3$
b $\quad x^{2}-10 x-3$
c $x^{2}-8 x$
d $x^{2}+6 x$
e $\quad x^{2}-2 x+7$
f $\quad x^{2}+3 x-2$

2 Write the following quadratic expressions in the form $p(x+q)^{2}+r$
a $2 x^{2}-8 x-16$
b $4 x^{2}-8 x-16$
c $\quad 3 x^{2}+12 x-9$
d $2 x^{2}+6 x-8$

3 Complete the square.
a $\quad 2 x^{2}+3 x+6$
b $3 x^{2}-2 x$
c $5 x^{2}+3 x$
d $3 x^{2}+5 x+3$

Extend

4 Write $\left(25 x^{2}+30 x+12\right)$ in the form $(a x+b)^{2}+c$.

Solving linear simultaneous equations using the elimination method

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

Example 1 Solve the simultaneous equations $3 x+y=5$ and $x+y=1$

$\begin{aligned} 3 x+y & =5 \\ -\quad x+y & =1 \end{aligned}$		Subtract the second equation from the first equation to eliminate the y term.
$2 x=4$		
So $x=2$		
Using $x+y=1$	2	To find the value of y, substitute $x=2$ into one of the original equations.
$2+y=1$		
So $y=-1$		
Check:	3	Substitute the values of x and y into
equation 1:3×2+(-1)=5 YES		both equations to check your
equation 2: $2+(-1)=1 \quad$ YES		answers.

Example 2 Solve $x+2 y=13$ and $5 x-2 y=5$ simultaneously.

Example 3 Solve $2 x+3 y=2$ and $5 x+4 y=12$ simultaneously.

$$
\begin{aligned}
& (2 x+3 y=2) \times 4 \rightarrow \quad 8 x+12 y=8 \\
& (5 x+4 y=12) \times 3 \rightarrow \frac{15 x+12 y=36}{7 x}=28 \\
& \text { So } x=4 \\
& \text { Using } 2 x+3 y=2 \\
& 2 \times 4+3 y=2 \\
& \text { So } y=-2 \\
& \text { Check: } \\
& \text { equation } 1: 2 \times 4+3 \times(-2)=2 \quad \text { YES } \\
& \text { equation } 2: 5 \times 4+4 \times(-2)=12 \text { YES } \\
& 1 \text { Multiply the first equation by } 4 \text { and } \\
& \text { the second equation by } 3 \text { to make } \\
& \text { the coefficient of } y \text { the same for } \\
& \text { both equations. Then subtract the } \\
& \text { first equation from the second } \\
& \text { equation to eliminate the } y \text { term. } \\
& 2 \text { To find the value of } y \text {, substitute } \\
& x=4 \text { into one of the original } \\
& \text { equations. } \\
& 3 \text { Substitute the values of } x \text { and } y \text { into } \\
& \text { both equations to check your } \\
& \text { answers. }
\end{aligned}
$$

Practice

Solve these simultaneous equations.

$$
1 \quad \begin{aligned}
& 4 x+y=8 \\
& \\
& x+y=5
\end{aligned}
$$

$3 \quad 4 x+y=3$
$3 x-y=11$
$5 \quad 2 x+y=11$
$x-3 y=9$
$23 x+y=7$
$3 x+2 y=5$
$4 \quad 3 x+4 y=7$
$x-4 y=5$
$6 \quad 2 x+3 y=11$
$3 x+2 y=4$

Solving linear simultaneous equations using the substitution method

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous
Textbook: Pure Year 1, 3.1 Linear simultaneous equations

Key points

- The subsitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations.

Examples

Example 4 Solve the simultaneous equations $y=2 x+1$ and $5 x+3 y=14$

$$
\begin{aligned}
& 5 x+3(2 x+1)=14 \\
& 5 x+6 x+3=14 \\
& 11 x+3=14 \\
& 11 x=11 \\
& \text { So } x=1 \\
& \text { Using } y=2 x+1 \\
& y=2 \times 1+1 \\
& \text { So } y=3 \\
& \text { Check: } \\
& \text { equation 1: } 3=2 \times 1+1 \quad \text { YES } \\
& \text { equation } 2: 5 \times 1+3 \times 3=14 \text { YES } \\
& 1 \text { Substitute } 2 x+1 \text { for } y \text { into the } \\
& \text { second equation. } \\
& 2 \text { Expand the brackets and simplify. } \\
& 3 \text { Work out the value of } x \text {. } \\
& 4 \text { To find the value of } y \text {, substitute } \\
& x=1 \text { into one of the original } \\
& \text { equations. } \\
& 5 \text { Substitute the values of } x \text { and } y \text { into } \\
& \text { both equations to check your } \\
& \text { answers. }
\end{aligned}
$$

Example 5 Solve $2 x-y=16$ and $4 x+3 y=-3$ simultaneously.

$$
\begin{aligned}
& \begin{array}{l}
y=2 x-16 \\
4 x+3(2 x-16)=-3 \\
4 x+6 x-48=-3 \\
10 x-48=-3 \\
10 x=45 \\
\text { So } x=4 \frac{1}{2} \\
\text { Using } y=2 x-16 \\
\quad y=2 \times 4 \frac{1}{2}-16 \\
\text { So } y=-7
\end{array} \\
& \text { Check: } \\
& \text { equation } 1: 2 \times 4 \frac{1}{2}-(-7)=16 \quad \text { YES } \\
& \text { equation } 2: 4 \times 4 \frac{1}{2}+3 \times(-7)=-3 \text { YES }
\end{aligned}
$$

1 Rearrange the first equation.
2 Substitute $2 x-16$ for y into the second equation.
3 Expand the brackets and simplify.
4 Work out the value of x.

5 To find the value of y, substitute $x=4 \frac{1}{2}$ into one of the original equations.

6 Substitute the values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.
$7 y=x-4$
$2 x+5 y=43$
$8 \quad y=2 x-3$
$5 x-3 y=11$
$92 y=4 x+5$
$9 x+5 y=22$
$10 \quad 2 x=y-2$
$8 x-5 y=-11$
$113 x+4 y=8$
$2 x-y=-13$
$123 y=4 x-7$
$2 y=3 x-4$
$133 x=y-1$
$2 y-2 x=3$
$143 x+2 y+1=0$
$4 y=8-x$

Extend

15 Solve the simultaneous equations $3 x+5 y-20=0$ and $2(x+y)=\frac{3(y-x)}{4}$.

Pythagoras' theorem

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- In a right-angled triangle the longest side is called the hypotenuse.
- Pythagoras' theorem states that for a right-angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides.

$c^{2}=a^{2}+b^{2}$

Examples

Example 1 Calculate the length of the hypotenuse. Give your answer to 3 significant figures.

$c^{2}=a^{2}+b^{2}$	1 Always start by stating the formula for Pythagoras' theorem and labelling the hypotenuse c and the other two sides a and b.
$\begin{aligned} & x^{2}=5^{2}+8^{2} \\ & x^{2}=25+64 \\ & x^{2}=89 \end{aligned}$	2 Substitute the values of a, b and c into the formula for Pythagoras' theorem.
$x=\sqrt{89}$	3 Use a calculator to find the square root.
$\begin{aligned} x & =9.43398113 \ldots \\ x & =9.43 \mathrm{~cm} \end{aligned}$	4 Round your answer to 3 significant figures and write the units with your answer.

Example 2 Calculate the length x.
Give your answer in surd form.

$c^{2}=a^{2}+b^{2}$	$\mathbf{1}$Always start by stating the formula for Pythagoras' theorem.
$10^{2}=x^{2}+4^{2}$	$\mathbf{2}$Substitute the values of a, b and c into the formula for Pythagoras' $100=x^{2}+16$ $x^{2}=84$ $x=\sqrt{84}$ $x=2 \sqrt{21} \mathrm{~cm}$
theorem.	

Practice

1 Work out the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d

2 Work out the length of the unknown side in each triangle.
Give your answers in surd form.
a

b

c

d

3 Work out the length of the unknown side in each triangle.
Give your answers in surd form.
a

b

c

d

4 A rectangle has length 84 mm and width 45 mm .
Calculate the length of the diagonal of the rectangle. Give your answer correct to 3 significant figures.

Hint

Draw a sketch of the rectangle.

Extend

5 A yacht is 40 km due North of a lighthouse.
A rescue boat is 50 km due East of the same lighthouse.
Work out the distance between the yacht and the rescue boat.
Give your answer correct to 3 significant figures.

Hint

Draw a diagram using the information given in the question.

6 Points A and B are shown on the diagram.
Work out the length of the line AB .
Give your answer in surd form.

7 A cube has length 4 cm .
Work out the length of the diagonal $A G$.
Give your answer in surd form.

Trigonometry in right-angled triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
- the side opposite the right angle is called the hypotenuse
- the side opposite the angle θ is called the opposite
- the side next to the angle θ is called the adjacent.

- In a right-angled triangle:
- the ratio of the opposite side to the hypotenuse is the sine of angle $\theta, \sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}$
- the ratio of the adjacent side to the hypotenuse is the cosine of angle $\theta, \cos \theta=\frac{\operatorname{adj}}{\text { hyp }}$
- the ratio of the opposite side to the adjacent side is the tangent of angle $\theta, \tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: $\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$.
- The sine, cosine and tangent of some angles may be written exactly.

	0	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

Examples

Example 1 Calculate the length of side x.
Give your answer correct to 3 significant figures.

Example 2 Calculate the size of angle x. Give your answer correct to 3 significant figures.

	1 Always start by labelling the sides.
$\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$	2 You are given the opposite and the adjacent so use the tangent ratio.
$\tan x=\frac{3}{4.5}$	3 Substitute the sides and angle into the tangent ratio.
$x=\tan ^{-1}\left(\frac{3}{4.5}\right)$	4 Use $\tan ^{-1}$ to find the angle.
$x=33.6900675 \ldots$	5 Use your calculator to work out $\tan ^{-1}(3 \div 4.5)$.
$x=33.7{ }^{\circ}$	6 Round your answer to 3 significant figures and write the units in your answer.

Example 3 Calculate the exact size of angle x.

$\begin{aligned} & \tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}} \\ & \tan x=\frac{\sqrt{3}}{3} \end{aligned}$
$x=30^{\circ}$

1 Always start by labelling the sides.

2 You are given the opposite and the adjacent so use the tangent ratio.

3 Substitute the sides and angle into the tangent ratio.
4 Use the table from the key points to find the angle.

Practice

1 Calculate the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d

e
6.2 cm

f

2 Calculate the size of angle x in each triangle.
Give your answers correct to 1 decimal place.
a

b

c

d

3 Work out the height of the isosceles triangle.
Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

4 Calculate the size of angle θ.
Give your answer correct to 1 decimal place.

Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of x in each triangle.
a

b

c

d

The cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.1 The cosine rule

Key points

- $\quad a$ is the side opposite angle A .
b is the side opposite angle B . c is the side opposite angle C.

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.

Examples

Example 4 Work out the length of side w.
Give your answer correct to 3 significant figures.

Example 5 Work out the size of angle θ.
Give your answer correct to 1 decimal place.

Practice

6 Work out the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d

7 Calculate the angles labelled θ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d

8 a Work out the length of WY.
Give your answer correct to 3 significant figures.
b Work out the size of angle WXY. Give your answer correct to 1 decimal place.

The sine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.2 The sine rule

Key points

- $\quad a$ is the side opposite angle A .
b is the side opposite angle B. c is the side opposite angle C.

- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.

Examples

Example 6 Work out the length of side x.
Give your answer correct to 3 significant figures.

$\frac{\sin A}{a}=\frac{\sin B}{b}$
$\frac{\sin \theta}{8}=\frac{\sin 127^{\circ}}{14}$
$\sin \theta=\frac{8 \times \sin 127^{\circ}}{14}$
$\theta=27.2^{\circ}$

1 Always start by labelling the angles and sides.

2 Write the sine rule to find the angle.
3 Substitute the values a, b, A and B into the formula.

4 Rearrange to make $\sin \theta$ the subject.
5 Use $\sin ^{-1}$ to find the angle. Round your answer to 1 decimal place and write the units in your answer.

Practice

9 Find the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d

10 Calculate the angles labelled θ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d

11 a Work out the length of QS.
Give your answer correct to 3 significant figures.
b Work out the size of angle RQS.
Give your answer correct to 1 decimal place.

Areas of triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.3 Areas of triangles

Key points

- $\quad a$ is the side opposite angle A.
b is the side opposite angle B .
c is the side opposite angle C.
- The area of the triangle is $\frac{1}{2} a b \sin C$.

Examples

Example 8 Find the area of the triangle.

		Always start by labelling the sides and angles of the triangle.
$\text { Area }=\frac{1}{2} a b \sin C$	2	State the formula for the area of a triangle.
$\text { Area }=\frac{1}{2} \times 8 \times 5 \times \sin 82^{\circ}$	3	Substitute the values of a, b and C into the formula for the area of a triangle.
Area $=19.805361 \ldots$	4	Use a calculator to find the area.
Area $=19.8 \mathrm{~cm}^{2}$	5	Round your answer to 3 significant figures and write the units in your answer.

Practice

12 Work out the area of each triangle.
Give your answers correct to 3 significant figures.
a

c

13 The area of triangle XYZ is $13.3 \mathrm{~cm}^{2}$. Work out the length of $X Z$.

Hint:

Rearrange the formula to make a side the subject.

Extend

14 Find the size of each lettered angle or side. Give your answers correct to 3 significant figures.
a

b

Hint:

For each one, decide whether to use the cosine or sine rule.

c

d

15 The area of triangle ABC is $86.7 \mathrm{~cm}^{2}$.
Work out the length of BC.
Give your answer correct to 3 significant figures.

Rearranging equations

A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives
Textbook: Pure Year 1, 12.1 Gradients of curves

Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.

Examples

Example 1 Make t the subject of the formula $v=u+a t$.

| $v=u+a t$ |
| :--- | :--- |
| $v-u=a t$ |
| $t=\frac{v-u}{a}$ |\quad| $\mathbf{1}$Get the terms containing t on one
 side and everything else on the other
 side. |
| :--- |

Example 2 Make t the subject of the formula $r=2 t-\pi t$.
$r=2 t-\pi t$
$r=t(2-\pi)$
$t=\frac{r}{2-\pi}$

1 All the terms containing t are already on one side and everything else is on the other side.
2 Factorise as t is a common factor.
3 Divide throughout by $2-\pi$.

Example 3 Make t the subject of the formula $\frac{t+r}{5}=\frac{3 t}{2}$.

$\frac{t+r}{5}=\frac{3 t}{2}$	$\mathbf{1}$Remove the fractions first by multiplying throughout by 10.
$2 t+2 r=15 t$	
$2 r=13 t$	$\mathbf{2}$Get the terms containing t on one side and everything else on the other side and simplify.
$t=\frac{2 r}{13}$	$\mathbf{3}$ Divide throughout by 13.

Example 4 Make t the subject of the formula $r=\frac{3 t+5}{t-1}$.

$r=\frac{3 t+5}{t-1}$	$\mathbf{1}$Remove the fraction first by multiplying throughout by $t-1$.
$r(t-1)=3 t+5$	$\mathbf{2}$ Expand the brackets.
$r t-r=3 t+5$	$\mathbf{3}$Get the terms containing t on one side and everything else on the other side.
$r t-3 t=5+r$	
$t(r-3)=5+r$	$\mathbf{4}$Factorise the LHS as t is a common factor.
$t=\frac{5+r}{r-3}$	$\mathbf{5}$Divide throughout by $r-3$.

Practice

Change the subject of each formula to the letter given in the brackets.
$1 \quad C=\pi d \quad[d]$
$2 P=2 l+2 w \quad[w]$
$3 \quad D=\frac{S}{T} \quad[T]$
$4 \quad p=\frac{q-r}{t} \quad[t]$
$5 \quad u=a t-\frac{1}{2} t \quad[t]$
$6 \quad V=a x+4 x$
[x]
$7 \quad \frac{y-7 x}{2}=\frac{7-2 y}{3}$
[y]
$8 x=\frac{2 a-1}{3-a}$
[a]
$9 \quad x=\frac{b-c}{d} \quad[d]$
$10 \quad h=\frac{7 g-9}{2+g} \quad[g]$
$11 e(9+x)=2 e+1 \quad[e]$
$12 y=\frac{2 x+3}{4-x}$

13 Make r the subject of the following formulae.
a $A=\pi r^{2}$
b $\quad V=\frac{4}{3} \pi r^{3}$
c $\quad P=\pi r+2 r$
d $\quad V=\frac{2}{3} \pi r^{2} h$

14 Make x the subject of the following formulae.
a $\frac{x y}{z}=\frac{a b}{c d}$
b $\quad \frac{4 \pi c x}{d}=\frac{3 z}{p y^{2}}$

15 Make $\sin B$ the subject of the formula $\frac{a}{\sin A}=\frac{b}{\sin B}$

16 Make $\cos B$ the subject of the formula $b^{2}=a^{2}+c^{2}-2 a c \cos B$.

Extend

17 Make x the subject of the following equations.
a $\quad \frac{p}{q}(s x+t)=x-1$
b $\quad \frac{p}{q}(a x+2 y)=\frac{3 p}{q^{2}}(x-y)$

Problem-solving Tasks

The following are a selection of problem-solving tasks from NRICH, STEP or UKMT for you to try, if you have time:

Question 1	Solve the system of equations: $a b=1, b c=2, c d=3, d e=4, e a=6$	Source: NRICH
Question 2	List all the real numbers x such that $(x-5)^{x^{2}-4}=1$	
Question 3	Five numbers are arranged in order from least to greatest: $x, x^{3}, x^{4}, x^{2}, x^{0}$ Where does $-x^{-1}$ belong in the list above?	
Question 4	Prove that are no positive integer solutions to the diophantine equation $x^{2}-y^{2}=1$.	
Question 5	Suppose that a, b and c are integers satisfying the equation $a^{3}+3 b^{3}=9 c^{3}$. Explain why a must be divisible by 3. Show further that b and c must also be divisible by 3. Deduce that the only integer solution is $a=b=c=0$.	Source: STEP
Question 6	Given the pair of simultaneous equations $\begin{aligned} & a x+2 y=1 \\ & 2 x+a y=b \end{aligned}$ under what conditions on a, b does there exist (i) a unique solution, (ii) no solution, (iii) an infinite number of solutions?	

$\left.$| Question 7 | The circle in the diagram
 has radius 6 cm . If the
 perimeter of the
 rectangle is 28 cm,
 what is its area? | |
| :--- | :--- | :--- |
| Question 8 | (a) Express 87 as the product of two
 factors.
 (b) Express $\mathrm{b}^{2}-\mathrm{a}^{2}$ as the product of two
 factors.
 (c) Find all integer values of x or which
 ($\mathrm{x}+10$) and $(\mathrm{x}+97)$ are both square
 numbers. | |
| UKMT | | |$\quad \right\rvert\,$

If you find that you have more time and want to do some more maths, the NRICH website has some great activities for you to try. These are just a few suggestions:
‘Funny factorisation’ https://nrich.maths.org/funnyfactorisation
‘Two and two' https://nrich.maths.org/twoandtwo
‘Finding Factors' https://nrich.maths.org/7452
‘Ben’s Game’ https://nrich.maths.org/bensgame
'Wipeout' https:///rrich.maths.org/wipeout
'Nine colours' https://nrich.maths.org/ninecolours
'Which Spinners' https://nrich.maths.org/6123
'Negatively triangular' https:///nrich.maths.org/5871
'Generating Triples' https://nrich.maths.org/generatingtriples
'Pick's Theorem' https://nrich.maths.org/pickstheorem

Answers - Expanding brackets and simplifying expressions

1 a $6 x-3$
b $-10 p q-8 q^{2}$
c $-3 x y+2 y^{2}$

2 a $21 x+35+12 x-48=33 x-13$
b $40 p-16-12 p-27=28 p-43$
c $27 s+9-30 s+50=-3 s+59=59-3 s$
d $8 x-6-3 x-5=5 x-11$
3 a $12 x^{2}+24 x$
b $20 k^{3}-48 k$
c $\quad 10 h-12 h^{3}-22 h^{2}$
d $21 s^{2}-21 s^{3}-6 s$
4 a $-y^{2}-4$
c $2 p-7 p^{2}$
b $5 x^{2}-11 x$
d $6 b^{2}$
$5 \quad y-4$
$6 \quad \mathbf{a} \quad-1-2 m$
b $5 p^{3}+12 p^{2}+27 p$
$7 \quad 7 x(3 x-5)=21 x^{2}-35 x$

8 a $x^{2}+9 x+20$
b $x^{2}+10 x+21$
c $x^{2}+5 x-14$
d $x^{2}-25$
e $2 x^{2}+x-3$
f $6 x^{2}-x-2$
g $\quad 10 x^{2}-31 x+15$
h $12 x^{2}+13 x-14$
i $18 x^{2}+39 x y+20 y^{2}$
j $x^{2}+10 x+25$
k $4 x^{2}-28 x+49$
l $16 x^{2}-24 x y+9 y^{2}$
$9 \quad 2 x^{2}-2 x+25$

10 a $x^{2}-1-\frac{2}{x^{2}}$
b $\quad x^{2}+2+\frac{1}{x^{2}}$

Answers - Surds and rationalising the denominator

1 a $3 \sqrt{5}$
c $\quad 4 \sqrt{3}$
e $10 \sqrt{3}$
g $\quad 6 \sqrt{2}$
2 a $15 \sqrt{2}$
c $3 \sqrt{2}$
e $\quad 6 \sqrt{7}$

3 a -1
c $\quad 10 \sqrt{5}-7$
$4 \quad$ a $\quad \frac{\sqrt{5}}{5}$
c $\frac{2 \sqrt{7}}{7}$
e $\sqrt{2}$
g $\frac{\sqrt{3}}{3}$
$5 \quad$ a $\quad \frac{3+\sqrt{5}}{4}$
$6 x-y$
$7 \quad \mathbf{a} \quad 3+2 \sqrt{2}$
b $5 \sqrt{5}$
d $5 \sqrt{7}$
f $2 \sqrt{7}$
h $9 \sqrt{2}$
b $\sqrt{5}$
d $\sqrt{3}$
f $5 \sqrt{3}$
b $\quad 9-\sqrt{3}$
d $26-4 \sqrt{2}$
b $\frac{\sqrt{11}}{11}$
d $\frac{\sqrt{2}}{2}$
f $\sqrt{5}$
h $\frac{1}{3}$
b $\frac{2(4-\sqrt{3})}{13}$
c $\quad \frac{6(5+\sqrt{2})}{23}$
b $\frac{\sqrt{x}+\sqrt{y}}{x-y}$

Answers－Rules of indices

1 a 1
b $\quad 1$
c $\quad 1$
d 1
2 a 7
b 4
c $\quad 5$
d 2
3 a 125
b $\quad 32$
c $\quad 343$
d 8
$4 \quad$ a $\quad \frac{1}{25}$
b $\quad \frac{1}{64}$
c $\quad \frac{1}{32}$
d $\frac{1}{36}$
$5 \quad$ a $\quad \frac{3 x^{3}}{2}$
b $5 x^{2}$
c $3 x$
d $\frac{y}{2 x^{2}}$
e $y^{\frac{1}{2}}$
f c^{-3}
g $2 x^{6}$
h x
$6 \quad$ a $\quad \frac{1}{2}$
b $\quad \frac{1}{9}$
c $\frac{8}{3}$
d $\frac{1}{4}$
e $\frac{4}{3}$
f $\frac{16}{9}$
7 a x^{-1}
b x^{-7}
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{3}}$
c $\quad x^{\frac{1}{4}}$
f $x^{-\frac{2}{3}}$
$8 \quad \mathbf{a} \quad \frac{1}{x^{3}}$
b $\quad 1$
c $\quad \sqrt[5]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt{x}}$
f $\frac{1}{\sqrt[4]{x^{3}}}$
9 a $5 x^{\frac{1}{2}}$
b $\quad 2 x^{-3}$
c $\quad \frac{1}{3} x^{-4}$
d $2 x^{-\frac{1}{2}}$
e $\quad 4 x^{-\frac{1}{3}}$
f $3 x^{0}$
10 a $x^{3}+x^{-2}$
b $\quad x^{3}+x$
c $\quad x^{-2}+x^{-7}$

Answers - Factorising expressions

1 a $2 x^{3} y^{3}(3 x-5 y)$
c $5 x^{2} y^{2}(5-2 x+3 y)$
2 a $(x+3)(x+4)$
c $(x-5)(x-6)$
e $(x-9)(x+2)$
g $(x-8)(x+5)$
3 a $\quad(6 x-7 y)(6 x+7 y)$
c $2(3 a-10 b c)(3 a+10 b c)$

4 a $(x-1)(2 x+3)$
c $\quad(2 x+1)(x+3)$
e $(5 x+3)(2 x+3)$
$5 \quad \mathbf{a} \quad \frac{2(x+2)}{x-1}$
c $\frac{x+2}{x}$
e $\quad \frac{x+3}{x}$

6 a $\frac{3 x+4}{x+7}$
c $\frac{2-5 x}{2 x-3}$
b $7 a^{3} b^{2}\left(3 b^{3}+5 a^{2}\right)$
b $\quad(x+7)(x-2)$
d $(x-8)(x+3)$
f $\quad(x+5)(x-4)$
h $(x+7)(x-4)$
b $\quad(2 x-9 y)(2 x+9 y)$
b $\quad(3 x+1)(2 x+5)$
d $\quad(3 x-1)(3 x-4)$
f $2(3 x-2)(2 x-5)$
b $\frac{x}{x-1}$
d $\frac{x}{x+5}$
f $\frac{x}{x-5}$
b $\frac{2 x+3}{3 x-2}$
d $\frac{3 x+1}{x+4}$
$7 \quad(x+5)$
$8 \frac{4(x+2)}{x-2}$

Answers - Completing the square

$1 \quad \mathbf{a} \quad(x+2)^{2}-1$
c $\quad(x-4)^{2}-16$
e $\quad(x-1)^{2}+6$

2 a $2(x-2)^{2}-24$
c $3(x+2)^{2}-21$
$3 \quad \mathbf{a} \quad 2\left(x+\frac{3}{4}\right)^{2}+\frac{39}{8}$
c $\quad 5\left(x+\frac{3}{10}\right)^{2}-\frac{9}{20}$
$4(5 x+3)^{2}+3$
b $\quad(x-5)^{2}-28$
d $(x+3)^{2}-9$
f $\left(x+\frac{3}{2}\right)^{2}-\frac{17}{4}$
b $\quad 4(x-1)^{2}-20$
d $2\left(x+\frac{3}{2}\right)^{2}-\frac{25}{2}$
b $3\left(x-\frac{1}{3}\right)^{2}-\frac{1}{3}$
d $3\left(x+\frac{5}{6}\right)^{2}+\frac{11}{12}$

Answers - Solving linear simultaneous equations
$1 x=1, y=4$
$2 x=3, y=-2$
$3 x=2, y=-5$
$4 x=3, y=-\frac{1}{2}$
$5 x=6, y=-1$
$6 \quad x=-2, y=5$
$7 x=9, y=5$
$8 \quad x=-2, y=-7$
$9 x=\frac{1}{2}, y=3 \frac{1}{2}$
$10 x=\frac{1}{2}, y=3$
$11 x=-4, y=5$
$12 x=-2, y=-5$
$13 x=\frac{1}{4}, y=1 \frac{3}{4}$
$14 x=-2, y=2 \frac{1}{2}$
$15 x=-2 \frac{1}{2}, y=5 \frac{1}{2}$

Answers - Pythagoras' theorem

1 a 10.3 cm
b $\quad 7.07 \mathrm{~cm}$
c $\quad 58.6 \mathrm{~mm}$
d $\quad 8.94 \mathrm{~cm}$
2 a $4 \sqrt{3} \mathrm{~cm}$
b $\quad 2 \sqrt{21} \mathrm{~cm}$
c $\quad 8 \sqrt{17} \mathrm{~mm}$
d $\quad 18 \sqrt{5} \mathrm{~mm}$
3 a $18 \sqrt{13} \mathrm{~mm}$
b $\quad 2 \sqrt{145} \mathrm{~mm}$
c $\quad 42 \sqrt{2} \mathrm{~mm}$
d $\quad 6 \sqrt{89} \mathrm{~mm}$
$4 \quad 95.3 \mathrm{~mm}$
564.0 km
$63 \sqrt{5}$ units
$7 \quad 4 \sqrt{3} \mathrm{~cm}$

Answers - Trigonometry

1		$\begin{aligned} & 6.49 \mathrm{~cm} \\ & 74.3 \mathrm{~mm} \end{aligned}$	b	$\begin{aligned} & 6.93 \mathrm{~cm} \\ & 7.39 \mathrm{~cm} \end{aligned}$	c	$\begin{aligned} & 2.80 \mathrm{~cm} \\ & 6.07 \mathrm{~cm} \end{aligned}$		
2	a	36.9°	b	57.1°	c	47.0°	d	38.7°
3	5.71 cm							
4	$20.4{ }^{\circ}$							
5	a	45°	b	1 cm	c	30°	d	$\sqrt{3} \mathrm{~cm}$
6	a	6.46 cm	b	9.26 cm	c	70.8 mm	d	9.70 cm
7	a	$22.2{ }^{\circ}$	b	$52.9{ }^{\circ}$	c	122.9°	d	$93.6{ }^{\circ}$
8	a	13.7 cm	b	76.0°				
9	a	4.33 cm	b	15.0 cm	c	45.2 mm	d	6.39 cm
10	a	$42.8{ }^{\circ}$	b	$52.8{ }^{\circ}$	c	$53.6{ }^{\circ}$	d	28.2°
11	a	8.13 cm	b	$32.3{ }^{\circ}$				
12	a	$18.1 \mathrm{~cm}^{2}$	b	$18.7 \mathrm{~cm}^{2}$	c	$693 \mathrm{~mm}^{2}$		
13	5.10 cm							
14	a	6.29 cm	b	$84.3{ }^{\circ}$	c	5.73 cm	d	$58.8{ }^{\circ}$
15		3 cm						

Answers - Rearranging equations

$1 d=\frac{C}{\pi}$
$4 \quad t=\frac{q-r}{p}$
$7 y=2+3 x$
$10 g=\frac{2 h+9}{7-h}$
$11 e=\frac{1}{x+7}$
$12 x=\frac{4 y-3}{2+y}$

13 a $r=\sqrt{\frac{A}{\pi}}$
b $\quad r=\sqrt[3]{\frac{3 V}{4 \pi}}$
c $\quad r=\frac{P}{\pi+2}$
d $r=\sqrt{\frac{3 V}{2 \pi h}}$

14 a $x=\frac{a b z}{c d y}$
b $\quad x=\frac{3 d z}{4 \pi c p y^{2}}$
$15 \sin B=\frac{b \sin A}{a}$
$16 \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$

17 a $\quad x=\frac{q+p t}{q-p s}$
b $\quad x=\frac{3 p y+2 p q y}{3 p-a p q}=\frac{y(3+2 q)}{3-a q}$

Solutions to Problem-solving Tasks

Question 1	$\left.\begin{array}{rl} a b & =1 \\ b c & =2 \\ c d & =3 \\ d e & =4 \\ e a & =6 \end{array}\right)$ Suthose abcde $=12$. Shen we have by inbilitution from abrue $\begin{aligned} 3 e & =12 \\ \Rightarrow e & =4 \\ \Rightarrow d & =1 \\ \Rightarrow a & =\frac{3}{2} \\ \Rightarrow b & =\frac{2}{3} \\ \Rightarrow c & =3 \end{aligned}$ If on the roter hand $a b c d e=-12$ $3 e=-12$ $\Rightarrow e=-4$ $\Rightarrow d=-1$ $\Rightarrow a=-\frac{3}{2}$ $\Rightarrow b=-\frac{2}{3}$ $\Rightarrow c=-3$ So jist tior solutions listed.
Question 2	$\begin{aligned} &(x-5)^{x^{2}-4}= 1 \\ & \Rightarrow 0= x^{2}-4(0 \neq x-5) \text { or } 1=x-5 \\ & \Rightarrow x= \pm 2\left(x^{2} \neq 5\right) \quad \Rightarrow x=6 \\ & x= \pm 2 \text { or } 6 \end{aligned}$
Question 3	Ronume $x \neq 0$ (as x^{0} is definied). Jhen $\begin{aligned} & x^{2}>0, x^{4}>0 \\ & \text { and } x^{2}>x^{4} \\ & \Rightarrow\|x\|<1 \\ & \text { Them } x^{3}<x^{4} \\ & \Rightarrow x<0 \\ & \text { so }-1<x<0 . \end{aligned}$ sence $-\frac{1}{x}>0$ $\text { and }-\frac{1}{x}>1=x^{\circ}$ So $-x^{-1}$ velougs last.

Question 4	$\left.\begin{array}{rl} x^{2}-y^{2} & =1 \\ \Rightarrow(x-y)(x+y) & =1 \\ \Rightarrow\left\{\begin{array}{l} x-y \\ \Rightarrow \end{array}\right)=1 \\ x+y & =1 \end{array}\right\} \text { or }\left\{\begin{array}{l} x-y=-1 \\ x+y=-1 \end{array}\right\}$ neitter of there conaines of excelusively posilire miteger.
Question 5	$\begin{aligned} a^{3}+3 b^{3} & =9 c^{3} \\ \Rightarrow \quad a^{3} & =9 c^{3}-3 b^{3} \\ & =3\left(3 c^{3}-b^{3}\right) \end{aligned}$ sance $31 a$ (and prously $a=0$). $\begin{aligned} \text { set } \quad a & =3 d \\ \Rightarrow 27 a^{3} & =3\left(3 c^{3}-b^{3}\right) \\ \Rightarrow 9 a^{3} & =3 c^{2}-b^{2} \\ \Rightarrow \quad b^{2} & =3 c^{3}-9 d^{3} \\ & =3\left(c^{3}-3 d^{3}\right) \\ \Rightarrow 3 / b & \end{aligned}$ $\text { set } b=3 f$ So all of a, b, c are multurkee of 3. given $a^{3}+3 b^{3}=9 c^{3}$ let 3^{n} be the miglest power of 3 which divides all three. so $a=3^{n} p, b=5 q, c=3^{n} r$ where p, q, r are enteges. then $p^{3}+3 q^{3}=9 r^{3}$ But dem alt of p, q, r are divicible by $3-a$ concradietion. so take is no higheat power, and so $a=b=c=0$ is de only Aolution. $\begin{aligned} & 27 f^{3}=3\left(c^{3}-3 d^{3}\right) \\ & \Rightarrow 9 f^{3}=c^{3}-3 d^{2} \\ & \Rightarrow c^{3}=3 d^{3}+9 f^{3} \\ &=3\left(d^{3}+3 f^{3}\right) \\ & \Rightarrow 3 k . \end{aligned}$
Question 6	$\begin{aligned} & a x+2 y=1 \\ & 2 x+a y=b \\ & \left\|\begin{array}{ll} a & 2 \\ 2 & a \end{array}\right\|=a^{2}-4 \end{aligned}$ So if $a \neq \pm 2$, there s a unique arecuion for (x, y). $\text { If } a=2 \text {, }$ $\begin{aligned} & 2 x+2 y=1 \\ & 2 x+2 y=b \end{aligned}$ so dere so an mifinite number of solutions if $b=1$. $\text { If } \begin{aligned} a & =-2, \\ -2 x+2 y & =1 \\ 2 x-2 y & =b \end{aligned}$ so there is an nifinite namber of solulions if $b=-1$

Question 7	By Pyctagores' $x^{2}+y^{2}=36$ and $\begin{equation*} x+y=7 \tag{*} \end{equation*}$ wrea $=4 x y$ $\begin{array}{r} (x) \Rightarrow x^{2}+2 x y+y^{2} \\ =49 \end{array}$ so $\begin{aligned} 2 x y & =13 \\ \Rightarrow 4 x y & =26 \end{aligned}$ area so $26 \mathrm{~cm}^{2}$
Question 8	a) $87=3 \times 29$. $b^{2}-a^{2}=(b-a)(b+a)$ c) suptroce sunce 3,29 are prumies. $\begin{aligned} & \Rightarrow(n=16, m=13) \text { or }(n=16, m=-13) \\ & \Rightarrow \quad x=159 \quad \text { or } \quad x=159 \end{aligned}$ i.e guist $x=159$

