Curriculum Map 2023-24						
Year 8						
Halfterm	Hyperlink to scheme of work	Unit title	Skills \& content covered	Skills \& content revisited	Links to GCSE skills and content	Summary of formative marking, feedback and student response
Autumn 1		Place value	Order any set of numbers (including those written in standard form); Round decimals to an appropriate degree of accuracy (including significant figures).	Rounding and ordering numbers.	Rounding; Standard Form.	Exit ticket 1: Rounding to decimal places and significant figures
		Addition \& Subtraction	Use positive and negative numbers of any size, the laws of arithmetic and inverse operations; Add and subtract numbers written in standard form; Solve problems involving perimeter (considering upper and lower bounds).	Adding and subtracting integers and decimals. Perimeter and area.	Calculating with standard form. Error intervals and bounds	Exit ticket 2: Numbers in standard form
		Angles	Know and use properties of angles, parallel and intersecting lines, triangles and other polygons; Know and use interior and exterior angle sums; Solve geometric problems using step-by-step reasoning.	Angles in a triangle, quadrilateral, on a straight line, around a point.	Angles in parallel lines. Interior and exterior angles in polygons.	Exit ticket 3: Interior and exterior angles of polygons
Autumn 2		Multiplication and Division	Use index notation for integer powers; know and use the index laws for multiplication and division of positive integer powers; Estimate square roots.	Know and apply BIDMAS (including indices); Use squares, positive and negative square roots, cubes and cube roots, and index notation for small positive integer powers.	Laws of Indices	Exxit Ticket 4: Index laws
		Factors, Multiples and Primes	Find and use the prime factorisation of a number. Use this to solve problems to find Highest Common Factors and Lowest Common Multiples.	Recognise and use HCF and LCM (in simple cases); Use Venn diagrams to depict common multiples and factors.	Prime Factor Form, Hacf and LCM	Exit ticket 5: Prime factorisation, HCF and LCM
		Applications - Area of a Circle	Convert between length and area measures; Solve problems involving area of compound shapes; Find the circumference and area of circles (simple); Find the (circumference and) area of a circle (to dp and in terms of pi); Find the lengths of arcs and areas of sectors.	Derive and use formula for the area of a triangle, parallelogram and trapezium; Calculate areas of compound shapes.	Area and Circumference of a Circle	Exit ticket 7: Circumference and Area of a circle
Spring 1		Fractions and Percentages	Add, subtract, multiply and divide fractions; Simplify or transform algebraic fractions by taking out common factors; Add and subtract simple algebraic fractions; Convert recurring decimals into fractions; Increase and decrease an amount by a given percentage or fraction; Use multipliers for percentage change.	Add and subtract simple fractions; Use division to convert a fraction to a decimal; Calculate fractions and percentages of quantities.	Fractions - the 4 ops (inc algebraic fractions); Compound interest and decay	Exit ticket 8: Adding and subtracting fractions
		Application (Probabilty)	Know that the sum of probabilities of all mutually exclusive outcomes is 1 and use this when solving problems; Know that, if the probability of an event occurring is p, then the probability of it not occurring is $1-\mathrm{p}$; Use lists and tables to record all possible mutually exclusive outcomes for single events and for two successive events; Use a numerical scale from 0 to 1 to express and compare experimental and theoretical probabilities in a range of contexts; Understand relative frequency as an estimate of probability and use this to compare outcomes of experiments; Use tree diagrams to represent outcomes of two or more events and to calculate probabilities of combinations of independent events.	Understand and use the probability scale from 0 to 1; Find and justify probabilities based on equally likely outcomes in simple contexts; Identify all the possible mutually exclusive outcomes of a single event; Compare experimental and theoretical probabilities in simple contexts.	Probability of Events	Exit ticket 9: Probability of events
Spring 2		Ratio and Proportion	Use proportional reasoning to solve problems, choosing the correct numbers to take as 100%, or as a whole; Compare two ratios; Simplify ratios, recognising links with fraction notation; Calculate ratios in a range of contexts; Recognise when fractions or percentages are needing to compare proportions; Understand and apply Pythagoras' theorem when solving problems in 2D.	Use the unitary method to solve problems involving ratio and direct proportion; Simplify ratios, including those in different units; Divide a quantity into two or more parts given a ratio; Apply understanding of link between ratio and proportion.	Ratio and Proportion; Pythagoras' Theorem	Exit ticket 10: Comparing and simplifying ratios; Exit ticket 11: Ratio and proportion problems
		Data Analysis	Interpret and construct tables, charts and diagrams, including frequency tables, bar charts, pictograms and pie charts; Mode, median, mean and range; Use of averages; Interpret and draw frequency polygons; Interpret and draw scatter diagrams and lines of best fit.	Construct and interpret graphs and diagrams to represent data, including bar line graphs and frequency diagrams for grouped discrete data; Find the mode, mean, median and range for a set of discrete data, and the modal class for grouped discrete data.	HD - Charts and Diagrams; Averages	Exit ticket 11: DATA: Averages and frequency diagrams
		Sequences	Generate terms of a linear sequence using term-to-term and position-to-term rules; Use linear expressions to desribe the nth term of as simple arithmetic sequence; Explore quadratic sequences.	Generate terms of a simple sequence, given a rule; Generate sequences from patterns or practical contexts.	Linear Sequences	Aft in lessons.
Summer 1		Algebraic Expressions	Simplify or transform linear expressions by collecting like terms (recap); Expand single term over a bracket (recap - positive and negative integers); Factorise linear expressions (recap); Expand two brackets to form a quadratic expression; Factorise a quadratic expression into brackets; Simplify algebraic fractions by factorising; Work with general iterative processes.	Use letter symbols to represent unknown numbers or variables; Simplify linear algebraic expressions by collecting like terms (numbers and letters).	Algebra - Simplifying, expanding, factorising	Exit ticket 13: Expand \& factorise expressions
		Algebraic Manipulation - Solving Equations	Construct and solve linear equations with integer coefficients (unknown on one or both sides, without and with brackets); Substitute numbers into expressions and formulae; Change the subject of simple formulae.	Construct and solve simple linear equations, e.g. $4 a=12$; Use simple formulae from mathematics and other subjects substitute positive integers into simple linear expressions and formulae; Substitute positive integers into expressions involving small powers	Algebra - Solving linear Equations; Substitution; Rea-arranging formulae	Exit ticket 14: Construct \& solve equations
		Linear Graphs	Generate points and plot graphs of linear functions (recap); Find the graident of lines given by $y=m x+c$; Investigate gradients of parallel and perpendicular lines; Find the midpoint of a line segment $A B$ given A and B.	Represent simple functions using words, symbols and mappings; Plot graphs of simple linear functions (y given explicitly in terms of X);	Linear graphs, $\mathrm{y}=\mathrm{m} \mathrm{x}+\mathrm{c}$	Exit ticket 15: Linear graphs
Summer 2		Transformations	Identify reflection symmetry in 2D shapes; Use a coordinate grid to solve problems involving translations, rotations, reflections and enlargements; Enlarge 2 D shapes, given a centre of enlargement and a positive integer scale factor, identifying the scale factor as the ratio of the lengths of any two corresponding line segments.	Reflect 2D shapes in given mirror lines; Rotate a $2 D$ shape about a given point; Translate a 2D shape around a grid;	Transformations Reflection, Rotation, Translation and Enlargement	Exit ticket 16: Shapes (transformations)
		Constructions	Identify and draw nets of shapes; Construct the perpendicular from a point to a line; Construct triangles, given right angle, hypotenuse and side (RHS); Construct triangles and other 2D shapes; Find a simple locus; Use and interpret maps and scale drawings; Problem solve using loci, maps and scale drawings.	Draw parallel and perpendicular lines; Construct squares and rectangles; Draw simple nets of 3D shapes	Construction and Loci	AfL in lessons.

