Year 9 Combined							
Half term	Unit title with hyperlink to scheme of work	Unit summary	Skills & content covered	Skills & content revisited	Summary of formative marking, feedback and student response	Summative assessment schedule, including assessment criteria	
Autumn Half- term 1	<u>B1 Cell Biology</u>	Cells are the basic unit of all forms of life. In this section we explore how structural differences between types of cells enables them to perform specific functions within the organism. These differences in cells are controlled by genes in the nucleus. For an organism to grow, cells must divide by mitosis producing two new identical cells. If cells are isolated at an early stage of growth before they have become too specialised, they can retain their ability to grow into a range of different types of cells. This phenomenon has led to the development of stem cell technology. This is a new branch of medicine that allows doctors to repair damaged organs by growing new tissue from stem cells	 Animal and plant cells Eukaryotic and Prokaryotic Cells Cell specialisation and differentiation Organisation Microscopy RP Microscopy Culturing Organisms (triple only) RP Growing bacteria (triple only) Cell Division Stem Cells Diffusion Osmosis RP Osmosis Active Transport 	Multicellular organisms are composed of cells which are organised into tissues, organs and systems to carry out life processes. There are many types of cell. Each has a different structure or feature so it can do a specific job. Explain why multi-cellular organisms need organ systems to keep their cells alive. Suggest what kind of tissue or organism a cell is part of, based on its features. Explain how to use a microscope to identify and compare different types of cells. Explain how uni-cellular organisms are adapted to carry out functions that in multi- cellular organisms are done by different types of cell.	Seneca HW, in class teacher questioning, MCQ's, starter tasks	ΕΟΤΤ	
Autumn Half- term 1	C1 Atomic. Structure	Introduction to the structure of the atom. Electron arrangements. The periodic table, metals, non metals halogens and noble gases. This module also covers mixtures.	Introduction to the model of the atom. Structure of the nucleus and the surrounding shells. This is linked to chemical symbols and their atomic number and mass number. Word equations and symbol equations introduced and covered in numerous chemistry modules throughout the course. Mixtures definition and seperation by chromatography. Periodic table - metals and non metals, halogens and noble gases and their positions in the table. History of the atomic model and the periodic table.	Word equations and symbol equations. Seperating mixtures. Periodic table coontetn from KS3 developed further.	Seneca HW, in class teacher questioning, MCQ's, starter tasks	ΕΟΤΤ	

Autumn 2	<u>P1 Energy</u>	Students must understand energy changes in a system, and the ways energy is stored before and after such changes. You should be able to calculate the amount of energy associated with a moving object, a stretched spring and an object raised above ground level. Next, you should become familiar with the concept of power: the rate at which energy is transferred. The more powerful a device is, the more energy it will transfer per second. Students must know the equation of power: Power = Work / time You should be able to give examples that illustrate the definition of power. For energy demands and efficiency, students must understand that all humans transfer energy and be able to recall and apply relevant equations.	Energy syllabus topics included are: 1. Changes in energy stores 2. Energy and heating 3. Energy demands 4. Work, power and efficiency	Students must understand energy changes in a system, and the ways energy is stored before and after such changes. You should be able to calculate the amount of energy associated with a moving object, a stretched spring and an object raised above ground level. Next, you should become familiar with the concept of power: the rate at which energy is transferred. The more powerful a device is, the more energy it will transfer per second. Students must know the equation of power: Power = Work / time You should be able to give examples that illustrate the definition of power. For energy demands and efficiency, students must understand that all humans transfer energy and be able to recall and apply relevant equations.	Seneca HW, in class teacher questioning, MCQ's, starter tasks	EOTT
Autumn 2	B2 Organisation	In this section we will learn about the human digestive system which provides the body with nutrients and the respiratory system that provides it with oxygen and removes carbon dioxide. In each case they provide dissolved materials that need to be moved quickly around the body in the blood by the circulatory system. Damage to any of these systems can be debilitating if not fatal. Although there has been huge progress in surgical techniques, especially with regard to coronary heart disease, many interventions would not be necessary if individuals reduced their risks through improved diet and lifestyle. We will also learn how the plant's transport system is dependent on environmental conditions to ensure that leaf cells are provided with the water and carbon dioxide that they need for photosynthesis.	 Tissues and organs Digestive System RP Food Tests Enzymes RP Amylase and pH Blood Heart Coronary Heart Disease Breathing Health, lifestyle and risk factors Cancer Plant tissues and organs Plant transport 	In gas exchange, oxygen and carbon dioxide move between alveoli and the blood. Oxygen is transported to cells for aerobic respiration and carbon dioxide, a waste product of respiration, is removed from the body. Breathing occurs through the action of muscles in the ribcage and diaphragm. The amount of oxygen required by body cells determines the rate of breathing. Explain how exercise, smoking and asthma affect the gas exchange system. Explain how the parts of the gas exchange system are adapted to their function. Explain observations about changes to breathing rate and volume. Explain how changes in volume and pressure inside the chest move gases in and out of the lungs. Explain why multi-cellular organisms need organ systems to keep their cells alive. Describe how organs and tissues involved in digestion are	Seneca HW, in class teacher questioning, MCQ's, starter tasks	EOTT

		Description of bonding between	Structure of the atom is	Simple molecules revisited		
		atoms. Three main types:	discussed in further to	States of matter revisited		
		1 Ionic	include formation of ions	States of matter revisited.		
		2 Covalent	dot and cross diagrams and			
		3 Metallic	a description of the three			
		S. Metallic	types of bonding. Use of			
			rypes of bonuing. Use of			
			moleculos			
			Molecules.			
			States of matter and their			
			properties			
			electrolysis. The use of		Seneca HW, in	
	C2 Structure and		electricity to split up		class teacher	
Spring 1	C2 Structure and		compounds into its		questioning,	EOTT
	DOILUINg		consident elements. Covers		MCQ's, starter	
			any forme liquid te motten		tasks	
			Salls and dissolved salls.			
			Giant molecular structures:			
			giant covatent, potymers and			
			described and evaluated			
			Graphita Diamond and			
			fullerenes covered in detail			
		The GCSE physics syllabus states	1. Electricity syllabus topics	Separation of positive or negative		
		that for electric circuits,	included are:	charges when objects are rubbed		
		and interpret circuit diagrams	2. Current, Potential	together: transfer of electrons, forces		
		including switch lamp fixed	difference and resistance	between charged objects		
		resistor and variable resistor.	3. Series and Parallel	The idea of electric field, forces acting		
		For mains electricity, you should	4. Domestic uses and safety	in contact		
		be able to explain that a live	5. Ellergy Hallsler			
	P2 Electricity	wire may be dangerous even		ampores in circuits, series and		
		when a switch in the mains	Only)	narallel circuits, currents add where		
		circuit is open and also the		branches meet and current as flow of		
		dangers of providing any		charge	Sonooo HW/ in	
		connection between the live		Potential difference, measured in	class teacher	
Spring 2		wire and earth.		volts, battery and bulb ratings:	questioning	FOTT
oping 2		he able to:		resistance, measured in ohms, as a	MCO's starter	LOTT
		Describe the production of static		ratio of potential difference (p.d.) to	tasks	
		electricity, and sparking, by		current	tuono	
		rubbing surfaces		Difference in resistance between		
		Describe evidence that charged		conducting and insulating		
		objects exert forces of attraction		components (quantitative)		
		or repulsion on one another		Comparing power ratings of		
		when not in contact		appliances in watts (W, kW)		
		Explain how the transfer of		Comparing amount of energy		
		electrons between objects can		transferred (J, kJ, KW hour)		
		explain the phenomena of static		Other processes that involve energy		
		electricity		transfers: completing an electrical		
				circuit		

		Pathogens are microorganisms		Explain how uni-cellular organisms		
		such as viruses and bacteria that		are adapted to		
		such as viruses and bacteria triat		are adapted to		
		cause infectious diseases in				
		animats and plants. They depend				
		on their host to provide the		are done by different types of cell.		
		conditions and nutrients that				
		they need to grow and reproduce.				
		They frequently produce toxins				
		that damage tissues and make us				
		feel ill. This section will explore				
		how we can avoid diseases by				
		reducing contact with them, as			Seneca HW, in	
	P2 Infaction and	well as how the body uses			class teacher	
Summer 1	B3 Intection and	barriers against pathogens. Once	1.What are pathogens?		questioning,	EOTT
	Response	inside the body our immune	2.Viral diseases		MCQ's, starter	
		system is triggered which is	3.Bacterial diseases		tasks	
		usually strong enough to destroy	4 Fungal diseases			
		the pathogen and prevent	5 Protist diseases			
		disease. When at risk from	6 Human defences			
		unusual or dangerous diseases	7 Vaccination			
		our body's natural system can be	8 Antibiotics and nainkillers			
		enhanced by the use of				
		vaccination. Since the 1940s a	dovelopment of druge			
		range of antibiotics have been	10 Managlanal antibadios			
		developed which have proved	(triple UT entry)			
		successful against a number of	(Inple HT only)			
		lethal diseases caused by	11.Plant diseases (triple			
		The particle model of matter is	Particle Model of Matter	Atomic model:		
		widely used to predict the	syllabus topics included are:	The Dalton atomic model.		
		benaviour of solids, liquids and	1. Density of materials	Atoms and molecules as particles.		
		gases. For this subject, the GCSE	2. Particles in gases	Differences between atoms, elements		
		physics synabus states that	3. Temperature changes and	and compounds.		
		students should be able to:	energy	Changes of state:		
		diagrams to model the		Solid, liquid and gas: The particle		
				models		
		liquids and gases		Properties of the different states,		
		Explain the differences in		including density differences.		
		density between the different		Conservation of material and mass,		
		states of matter in terms of the		and reversibility, in melting, freezing,	Seneca HW, in	
		arrangement of atoms or		evaporation, sublimation,	class teacher	
Summer 1	P3 Particle Model	molecules		condensation, dissolving.	auestioning.	EOTT
	Of Matter	Describe how when substances		Pressure:	MCO's, starter	-
		change state (melt_freeze_hoil		Atmospheric pressure as height	tasks	
		evanorate condense or		increases.		
		sublimate) mass is conserved		Pressure in liquids.		
		Interpret heating and cooling		Pressure measured by ratio of force		
		graphs that include changes of		over area.		
		state		Changes with temperature in motion		
		Distinguish between specific		and spacing of particles		
		heat capacity and specific latent				
		heat				
		Explain how the motion of the				
		molecules in a gas is related to				
		both its temperature and its				
			1			

		For this topic, the GCSE physics	Atomic Structure syllabus	a simple (Dalton) atomic model		
		syllabus states that students	topics included are:	differences between atoms, elements		
		should be able to:	1. Atoms, isotopes and ions	and		
		Understand the structure of	2. Models of the atom	compounds		
		isotopes and ions	3. Nuclear fission and fusion	atoms and molecules as particles		
		Describe why the new evidence	4. Radioactive decay	fuels and energy resources		
		from the scattering experiment	5.Uses and dangers of			
		led to a change in the atomic	radiation			
		model				
		Describe the difference between				
		the plum pudding model of the				
		atom and the nuclear model of			Seneca HW, in	
		the atom			class teacher	
Summer 2	P4 Atomic	Use the names and symbols of			questioning,	EOTT
	Structure	common nuclei and particles			MCQ's, starter	
		Explain the concept of half-life			tasks	
		and how it is related to the				
		random nature of radioactive				
		decay				
		Compare hazards associated				
		with contamination and radiation				
		Draw/interpret diagrams				
		representing nuclear fission and				
		how a chain reaction may occur				