		C	Curriculum Map 2024-25			
			Year 9 Triple			
Half term	Unit title with hyperlink to scheme of work	Unit summary	Skills & content covered	Skills & content revisited	Summary of formative marking, feedback and student response	Summative assessment schedule, including assessment criteria
Autumn Half- term 1	B1 Cell Biology	Cells are the basic unit of all forms of life. In this section we explore how structural differences between types of cells enables them to perform specific functions within the organism. These differences in cells are controlled by genes in the nucleus. For an organism to grow, cells must divide by mitosis producing two new identical cells. If cells are isolated at an early stage of growth before they have become too specialised, they can retain their ability to grow into a range of different types of cells. This phenomenon has led to the development of stem cell technology. This is a new branch of medicine that allows doctors to repair damaged organs by growing new tissue from stem cells	 Animal and plant cells Eukaryotic and Prokaryotic Cells Cell specialisation and differentiation Organisation Microscopy RP Microscopy Culturing Organisms (triple only) RP Growing bacteria (triple only) Gell Division Stem Cells Diffusion Cosmosis RP Osmosis Active Transport 	Multicellular organisms are composed of cells which are organised into tissues, organs and systems to carry out life processes. There are many types of cell. Each has a different structure or feature so it can do a specific job. Explain why multi- cellular organisms need organ systems to keep their cells alive. Suggest what kind of tissue or organism a cell is part of, based on its features. Explain how to use a microscope to identify and compare different types of cells. Explain how uni-cellular organisms are adapted to carry out functions that in multi- cellular organisms are done by different types of cell.	Seneca HW, in class teacher questioning, MCQ's, starter tasks	ΕΟΤΤ
Autumn Half- term 1	<u>C1 Atomic</u> Structure	Introduction to the structure of the atom. Electron arrangements. The periodic table, metals, non metals halogens and noble gases. This module also covers mixtures.	Introduction to the model of the atom. Structure of the nucleus and the surrounding shells. This is linked to chemical symbols and their atomic number and mass number. Word equations and symbol equations introduced and covered in numerous chemistry modules throughout the course. Mixtures definition and seperation by chromatography. Periodic table - metals and non metals, halogens and noble gases and their positions in the table. History of the atomic model and the periodic table.	Word equations and symbol equations. Seperating mixtures. Periodic table coontetn from KS3 developed further.	Seneca HW, in class teacher questioning, MCQ's, starter tasks	ΕΟΤΤ

Autumn Half- term 1	<u>P1 Energy</u>	Students must understand energy changes in a system, and the ways energy is stored before and after such changes. You should be able to calculate the amount of energy associated with a moving object, a stretched spring and an object raised above ground level. Next, you should become familiar with the concept of power: the rate at which energy is transferred. The more powerful a device is, the more energy it will transfer per second. Students must know the equation of power: Power = Work / time You should be able to give examples that illustrate the definition of power. For energy demands and efficiency, students must understand that all humans transfer energy and be able to recall and apply relevant equations.	Energy syllabus topics included are: 1. Changes in energy stores 2. Energy and heating 3. Energy demands 4. Work, power and efficiency	Students must understand energy changes in a system, and the ways energy is stored before and after such changes. You should be able to calculate the amount of energy associated with a moving object, a stretched spring and an object raised above ground level. Next, you should become familiar with the concept of power: the rate at which energy is transferred. The more powerful a device is, the more energy it will transfer per second. Students must know the equation of power: Power = Work / time You should be able to give examples that illustrate the definition of power. For energy demands and efficiency, students must understand that all humans	Seneca HW, in class teacher questioning, MCQ's, starter tasks	EOTT
		In this section we will learn about the human digestive system which provides	1.Tissues and organs 2.Digestive System	transfer energy and be able to recall and apply relevant equations. In gas exchange, oxygen and carbon dioxide move between		
Autumn 2/Spring 1	B2 Organisation	the body with nutrients and the respiratory system that provides it with oxygen and removes carbon dioxide. In each case they provide dissolved materials that need to be moved quickly around the body in the blood by the circulatory system. Damage to any of these systems can be debilitating if not fatal. Although there has been huge progress in surgical techniques, especially with regard to coronary heart disease, many interventions would not be necessary if individuals reduced their risks through improved diet and lifestyle. We will also learn how the plant's transport system is dependent on environmental conditions to ensure that leaf cells are provided with the water and carbon dioxide that they need for photosynthesis.	3.RP Food Tests 4.Enzymes 5.RP Amylase and pH 6.Blood 7.Heart 8.Coronary Heart Disease 9.Breathing 10.Heatth, lifestyle and risk factors 11.Cancer 12.Plant tissues and organs 13.Plant transport	alveoli and the blood. Oxygen is transported to cells for aerobic respiration and carbon dioxide, a waste product of respiration, is removed from the body. Breathing occurs through the action of muscles in the ribcage and diaphragm. The amount of oxygen required by body cells determines the rate of breathing. Explain how exercise, smoking and asthma affect the gas exchange system. Explain how the parts of the gas exchange system are adapted to their function. Explain observations about changes to breathing rate and volume. Explain how changes in volume and pressure inside the chest move gases in and out of the lungs. Explain why multi-cellular organisms need organ systems to keep their cells alive.	Seneca HW, in class teacher questioning, MCQ's, starter tasks	EOTT

		1			1	
		Description of bonding between atoms.	Structure of the atom is	Simple molecules revisited.		
		Three main types:	discussed in further to include	States of matter revisited.		
		1. lonic	formation of ions, dot and			
		2. Covalent	cross diagrams and a			
		3. Metallic	description of the three types			
			of bonding. Use of models to			
			represent molecules.			
			States of matter and their			
			properties			
			Electrolysis: the use of			
			electricity to split up		Seneca HW, in	
Autumn	C2 Structure and		compounds into its consituent		class teacher	
2/Spring 1	Bonding		elements. Covers any ionic		questioning,	EOTT
2/00/1161	Donania		liquid ie molten salts and		MCQ's, starter	
			dissolved salts.		tasks	
			Giant molecular structures:			
			giant covalent, polymers and			
			metals. Each structure			
			described and explained.			
			Graphite, Diamond and			
			fullerenes covered in detail.			
		The GCSE physics syllabus states that	1. Electricity syllabus topics	Separation of positive or negative		
		for electric circuits, students should be	included are:	charges when objects are rubbed		
		able to draw and interpret circuit	2. Current, Potential difference			
		diagrams, including switch, lamp, fixed	and resistance	forces between charged objects		
		resistor and variable resistor.	3. Series and Parallel			
		For mains electricity, you should be	4. Domestic uses and safety	The idea of electric field, forces		
		able to explain that a live wire may be		acting across the space between		
		dangerous even when a switch in the	5. Energy Transfer	objects not in contact		
		mains circuit is open and also the	6. Static Electricity (Physics	Electric current, measured in		
		dangers of providing any connection	Only)	amperes, in circuits, series and		
		between the live wire and earth.		parallel circuits, currents add		
		For static electricity, you should be able		where branches meet and current		
		to:		as flow of charge	Seneca HW, in	
Autumn		Describe the production of static		Potential difference, measured in	class teacher	
2/Spring 1	P2 Electricity	electricity, and sparking, by rubbing		volts, battery and bulb ratings;	questioning,	EOTT
2/Spring 1		surfaces		resistance, measured in ohms, as	MCQ's, starter	
		Describe evidence that charged objects		a ratio of potential difference (p.d.)	tasks	
		exert forces of attraction or repulsion		to current		
		on one another when not in contact		Difference in resistance between		
		Explain how the transfer of electrons		conducting and insulating		
		between objects can explain the		components (quantitative)		
		phenomena of static electricity		Comparing power ratings of		
				appliances in watts (W, kW)		
				Comparing amount of energy		
				transferred (J, kJ, KW hour)		
				Other processes that involve		
				energy transfers: completing an		
				electrical circuit		
		l	1	1		

Spring 2/Summer	B3 Infection and Response	Pathogens are microorganisms such as viruses and bacteria that cause infectious diseases in animals and plants. They depend on their host to provide the conditions and nutrients that they need to grow and reproduce. They frequently produce toxins that damage tissues and make us feel ill. This section will explore how we can avoid diseases by reducing contact with them, as well as how the body uses barriers against pathogens. Once inside the body our immune system is triggered which is usually strong enough to destroy the pathogen and prevent disease. When at risk from unusual or dangerous diseases our body's natural system can be enhanced by the use of vaccination. Since the 1940s a range of antibiotics have been developed which have proved successful against a number of lethal diseases caused by bacteria. Unfortunately many groups of bacteria have now become resistant to these antibiotics. The race is now on to develop a new set of antibiotics.	1.What are pathogens? 2.Viral diseases 3.Bacterial diseases 3.Bacterial diseases 5.Protist diseases 5.Protist diseases 6.Human defences 7.Vaccination 8.Antibiotics and painkillers 9.Discovery and development of drugs 10.Monoclonal antibodies (triple HT only) 11.Plant diseases (triple only)	Explain how uni-cellular organisms are adapted to carry out functions that in multi- cellular organisms are done by different types of cell.	Seneca HW, in class teacher questioning, MCQ's, starter tasks	EOTT
Spring 2	<u>C3 Quantitative.</u> Chemistry	Chemists use quantitative analysis to determine the formulae of compounds and the equations for reactions. Given this information, analysts can then use quantitative methods to determine the purity of chemical samples and to monitor the yield from chemical reactions. Chemical reactions can be classified in various ways. Identifying different types of chemicalreaction allows chemists to make sense of how different chemicals react together, to establish patterns and to make predictions about the behaviour of other chemicals. Chemical equations provide a means of representing chemical reactions and are a key way for chemists to communicate chemical ideas.	 Conservation Of Mass Mass Changes Concentration 7. The Mole Percentage Yield (triple only) Atom Economy(triple only) Cocncentration 2 (triple only) Cost Volumes (triple only) 	Chemical formulas and equations. Sovents, solutes and solutions.	Seneca HW, in class teacher questioning, MCQ's, starter tasks	EOTT

Spring 2	<u>P3 Particle Model</u> <u>Of Matter</u>	The particle model of matter is widely used to predict the behaviour of solids, liquids and gases. For this subject, the GCSE physics syllabus states that students should be able to: Recognise/draw simple diagrams to model the difference between solids, liquids and gases Explain the different states of matter in terms of the arrangement of atoms or molecules Describe how, when substances change state (melt, freeze, boil, evaporate, condense or sublimate), mass is conserved Interpret heating and cooling graphs that include changes of state Distinguish between specific heat capacity and specific latent heat Explain how the motion of the molecules in a gas is related to both its temperature and its pressure Explain qualitatively the relation between the temperature of a gas and lits pressure at constant volume	Particle Model of Matter syllabus topics included are: 1. Density of materials 2. Particles in gases 3. Temperature changes and energy	Atomic model: The Dalton atomic model. Atoms and molecules as particles. Differences between atoms, elements and compounds. Changes of state: Solid, liquid and gas: The particle models Properties of the different states, including density differences. Conservation of material and mass, and reversibility, in melting, freezing, evaporation, sublimation, condensation, dissolving. Pressure: Atmospheric pressure as height increases. Pressure in liquids. Pressure measured by ratio of force over area. Changes with temperature in motion and spacing of particles	Seneca HW, in class teacher questioning, MCQ's, starter tasks	EOTT
Summer 1	C4 Chemical Changes (part 1)	Its pressure at constant volume Calculate the change in the pressure of a gas or the volume of a gas when either the pressure or volume is Understanding of chemical changes began when people began experimenting with chemical reactions in a systematic way and organizing their results logically. Knowing about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements and compounds react with each other and how easily they can be 'pulled apart'.	 Metal Oxides Reactivity Of Metals Extraction Of Metals Displacement Reactions Metals and Acids Forming Salts Salt Formation Required Practical. Titration Calculations (2 lessons) Titration Required Practical Strong and Weak Acids Electrolysis Introduction Electrolysis Of Molten Conplounds Extraction Of Aluminium Electrolysis Required Practical 	Chemical Reactions, Acids and Alkalis. Oxidation- the gain of oxygen and loss of electrons Reduction- the loss of oxygen and gain of electrons Redox- oxidation and reduction occurring simultaneously Displacement- a more reactive element takes the place of a less reactive element Neutralisation- the reaction between an acid and alkali to form a salt and water Electrolysis- the splitting up of an ionic compound using electricity	Seneca HW, in class teacher questioning, MCQ's, starter tasks	EOTT

Summer 2	P4 Atomic. Structure	states that students should be able to: Understand the structure of isotopes and ions	 Models of the atom Nuclear fission and fusion Radioactive decay Uses and dangers of radiation 	a simple (Dalton) atomic model differences between atoms, elements and compounds atoms and molecules as particles fuels and energy resources	Seneca HW, in class teacher questioning, MCQ's, starter tasks	ΕΟΤΤ
----------	-------------------------	---	--	---	---	------